Skip to content

Pytarget py3 support #2

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Mar 1, 2017
Merged

Pytarget py3 support #2

merged 3 commits into from
Mar 1, 2017

Conversation

lorddoskias
Copy link

No description provided.

* This is a first step in supporting python3 version.
Most of the changes cope with the fact that there is no longer a
PyString_* object. Instead there is either PyUnicode or PyBytes. In order to
obtain a char* one must first convert the PyUnicode object to PyBytes,
representing a byte array. And then get a pointer to the byte array.

* Another thing is that there is no longer a PyInt. Everything is PyLong, so
comment out a PyInt check in register_set_value.

(cherry picked from commit 6c1337293ad98d6178b3d6c2f21edbe74e967e22)
@jeffmahoney jeffmahoney merged commit d26105c into crash-python:python-target-7.12.1 Mar 1, 2017
jeffmahoney pushed a commit that referenced this pull request Nov 10, 2017
ASAN reports the following error,

(gdb) PASS: gdb.fortran/vla-ptr-info.exp: continue to breakpoint: pvla-associated
print &pvla^M
=================================================================^M
^[[1m^[[31m==14331==ERROR: AddressSanitizer: global-buffer-overflow on address 0x000000ea569f at pc 0x0000008eb546 bp 0x7ffde0c1dc70 sp 0x7ffde0c1dc60^M
^[[1m^[[0m^[[1m^[[34mREAD of size 1 at 0x000000ea569f thread T0^[[1m^[[0m^M
    #0 0x8eb545 in f_print_type(type*, char const*, ui_file*, int, int, type_print_options const*) ../../binutils-gdb/gdb/f-typeprint.c:89^M
    #1 0xb611e2 in type_print(type*, char const*, ui_file*, int) ../../binutils-gdb/gdb/typeprint.c:365^M
    #2 0x7b3471 in c_value_print(value*, ui_file*, value_print_options const*) ../../binutils-gdb/gdb/c-valprint.c:650^M
    #3 0xb99517 in value_print(value*, ui_file*, value_print_options const*) ../../binutils-gdb/gdb/valprint.c:1233^M
    #4 0xa42be8 in print_formatted ../../binutils-gdb/gdb/printcmd.c:321^M
    #5 0xa46ac9 in print_value(value*, format_data const*) ../../binutils-gdb/gdb/printcmd.c:1233^M
    #6 0xa46d82 in print_command_1 ../../binutils-gdb/gdb/printcmd.c:1261^M
    #7 0xa46e3e in print_command ../../binutils-gdb/gdb/printcmd.c:1267

on this line of code

      demangled_args = varstring[strlen (varstring) - 1] == ')';

because varstring is an empty string and strlen () is 0, so "strlen () - 1"
is definitely out of the bound of "varstring",

(gdb) bt 10
    at /home/yao/SourceCode/gnu/gdb/git/gdb/f-typeprint.c:56
    at /home/yao/SourceCode/gnu/gdb/git/gdb/typeprint.c:365
    at /home/yao/SourceCode/gnu/gdb/git/gdb/c-valprint.c:650
    at /home/yao/SourceCode/gnu/gdb/git/gdb/valprint.c:1236

This patch adds a pre-check that varstring is empty or not.

gdb:

2017-02-27  Yao Qi  <yao.qi@linaro.org>

	* f-typeprint.c (f_print_type): Check "varstring" is empty first.
jeffmahoney pushed a commit that referenced this pull request Nov 10, 2017
Commit d7e7473 ("Eliminate make_cleanup_ui_file_delete / make
ui_file a class hierarchy") introduced a problem when using "layout
regs", that leads gdb to crash when issuing:

./gdb ./a.out -ex 'layout regs' -ex start

From the backtrace, it's caused by this 'delete' on tui_restore_gdbout():

 (gdb) bt
 #0  0x00007ffff6b962b2 in free () from /lib64/libc.so.6
 #1  0x000000000059fa47 in tui_restore_gdbout (ui=0x22997b0) at ../../gdb/tui/tui-regs.c:714
 #2  0x0000000000619996 in do_my_cleanups (pmy_chain=pmy_chain@entry=0x1e08320 <cleanup_chain>, old_chain=old_chain@entry=0x235b4b0) at ../../gdb/common/cleanups.c:154
 #3  0x0000000000619b1d in do_cleanups (old_chain=old_chain@entry=0x235b4b0) at ../../gdb/common/cleanups.c:176
 #4  0x000000000059fb0d in tui_register_format (frame=frame@entry=0x22564e0, regnum=regnum@entry=0) at ../../gdb/tui/tui-regs.c:747
 #5  0x000000000059ffeb in tui_get_register (data=0x2434d18, changedp=0x0, regnum=0, frame=0x22564e0) at ../../gdb/tui/tui-regs.c:768
 #6  tui_show_register_group (refresh_values_only=<optimized out>, frame=0x22564e0, group=0x1e09250 <general_group>) at ../../gdb/tui/tui-regs.c:287
 #7  tui_show_registers (group=0x1e09250 <general_group>) at ../../gdb/tui/tui-regs.c:156
 #8  0x00000000005a07cf in tui_check_register_values (frame=frame@entry=0x22564e0) at ../../gdb/tui/tui-regs.c:496
 #9  0x00000000005a3e65 in tui_check_data_values (frame=frame@entry=0x22564e0) at ../../gdb/tui/tui-windata.c:232
 #10 0x000000000059cf65 in tui_refresh_frame_and_register_information (registers_too_p=1) at ../../gdb/tui/tui-hooks.c:156
 #11 0x00000000006d5c05 in generic_observer_notify (args=0x7fffffffdbe0, subject=<optimized out>) at ../../gdb/observer.c:167
 #12 observer_notify_normal_stop (bs=<optimized out>, print_frame=print_frame@entry=1) at ./observer.inc:61
 #13 0x00000000006a6409 in normal_stop () at ../../gdb/infrun.c:8364
 #14 0x00000000006af8f5 in fetch_inferior_event (client_data=<optimized out>) at ../../gdb/infrun.c:3990
 #15 0x000000000066f0fd in gdb_wait_for_event (block=block@entry=0) at ../../gdb/event-loop.c:859
 #16 0x000000000066f237 in gdb_do_one_event () at ../../gdb/event-loop.c:322
 #17 0x000000000066f386 in gdb_do_one_event () at ../../gdb/event-loop.c:353
 #18 0x00000000007411bc in wait_sync_command_done () at ../../gdb/top.c:570
 #19 0x0000000000741426 in maybe_wait_sync_command_done (was_sync=0) at ../../gdb/top.c:587
 #20 execute_command (p=<optimized out>, p@entry=0x7fffffffe43a "start", from_tty=from_tty@entry=1) at ../../gdb/top.c:676
 #21 0x00000000006c2048 in catch_command_errors (command=0x741200 <execute_command(char*, int)>, arg=0x7fffffffe43a "start", from_tty=1) at ../../gdb/main.c:376
 #22 0x00000000006c2b60 in captured_main_1 (context=0x7fffffffde70) at ../../gdb/main.c:1119
 #23 captured_main (data=0x7fffffffde70) at ../../gdb/main.c:1140
 #24 gdb_main (args=args@entry=0x7fffffffdf90) at ../../gdb/main.c:1158
 #25 0x0000000000408cf5 in main (argc=<optimized out>, argv=<optimized out>) at ../../gdb/gdb.c:32
 (gdb) f 1
 #1  0x000000000059fa47 in tui_restore_gdbout (ui=0x22997b0) at ../../gdb/tui/tui-regs.c:714
 714	  delete gdb_stdout;

The problem is simply that the commit mentioned above made the ui_file
that gdb_stdout is temporarily set to be a stack-allocated
string_file, while before it used to be a heap-allocated ui_file.  The
fix is simply to remove the now-incorrect delete.

New test included, which exercises enabling all TUI layouts, with and
without execution.  (This particular crash only triggers with
execution.)

gdb/ChangeLog:
2017-03-07  Pedro Alves  <palves@redhat.com>

	* tui/tui-regs.c (tui_restore_gdbout): Don't delete gdb_stdout.

gdb/testsuite/ChangeLog:
2017-03-07  Pedro Alves  <palves@redhat.com>

	* gdb.base/tui-layout.c: New file.
	* gdb.base/tui-layout.exp: New file.
jeffmahoney pushed a commit that referenced this pull request Nov 10, 2017
I build GDB with asan, and run test case hook-stop.exp, and threadapply.exp,
I got the following asan error,

=================================================================^M
^[[1m^[[31m==2291==ERROR: AddressSanitizer: heap-use-after-free on address 0x6160000999c4 at pc 0x000000826022 bp 0x7ffd28a8ff70 sp 0x7ffd28a8ff60^M
^[[1m^[[0m^[[1m^[[34mREAD of size 4 at 0x6160000999c4 thread T0^[[1m^[[0m^M
    #0 0x826021 in release_stop_context_cleanup ../../binutils-gdb/gdb/infrun.c:8203^M
    #1 0x72798a in do_my_cleanups ../../binutils-gdb/gdb/common/cleanups.c:154^M
    #2 0x727a32 in do_cleanups(cleanup*) ../../binutils-gdb/gdb/common/cleanups.c:176^M
    #3 0x826895 in normal_stop() ../../binutils-gdb/gdb/infrun.c:8381^M
    #4 0x815208 in fetch_inferior_event(void*) ../../binutils-gdb/gdb/infrun.c:4011^M
    #5 0x868aca in inferior_event_handler(inferior_event_type, void*) ../../binutils-gdb/gdb/inf-loop.c:44^M
....
^[[1m^[[32m0x6160000999c4 is located 68 bytes inside of 568-byte region [0x616000099980,0x616000099bb8)^M
^[[1m^[[0m^[[1m^[[35mfreed by thread T0 here:^[[1m^[[0m^M
    #0 0x7fb0bc1312ca in __interceptor_free (/usr/lib/x86_64-linux-gnu/libasan.so.2+0x982ca)^M
    #1 0xb8c62f in xfree(void*) ../../binutils-gdb/gdb/common/common-utils.c:100^M
    #2 0x83df67 in free_thread ../../binutils-gdb/gdb/thread.c:207^M
    #3 0x83dfd2 in init_thread_list() ../../binutils-gdb/gdb/thread.c:223^M
    #4 0x805494 in kill_command ../../binutils-gdb/gdb/infcmd.c:2595^M
....

Detaching from program: /home/yao.qi/SourceCode/gnu/build-with-asan/gdb/testsuite/outputs/gdb.threads/threadapply/threadapply, process 2399^M
=================================================================^M
^[[1m^[[31m==2387==ERROR: AddressSanitizer: heap-use-after-free on address 0x6160000a98c0 at pc 0x00000083fd28 bp 0x7ffd401c3110 sp 0x7ffd401c3100^M
^[[1m^[[0m^[[1m^[[34mREAD of size 4 at 0x6160000a98c0 thread T0^[[1m^[[0m^M
    #0 0x83fd27 in thread_alive ../../binutils-gdb/gdb/thread.c:741^M
    #1 0x844277 in thread_apply_all_command ../../binutils-gdb/gdb/thread.c:1804^M
....
^M
^[[1m^[[32m0x6160000a98c0 is located 64 bytes inside of 568-byte region [0x6160000a9880,0x6160000a9ab8)^M
^[[1m^[[0m^[[1m^[[35mfreed by thread T0 here:^[[1m^[[0m^M
    #0 0x7f59a7e322ca in __interceptor_free (/usr/lib/x86_64-linux-gnu/libasan.so.2+0x982ca)^M
    #1 0xb8c62f in xfree(void*) ../../binutils-gdb/gdb/common/common-utils.c:100^M
    #2 0x83df67 in free_thread ../../binutils-gdb/gdb/thread.c:207^M
    #3 0x83dfd2 in init_thread_list() ../../binutils-gdb/gdb/thread.c:223^M

This patch fixes the issue by deleting thread_info object if it is
deletable, otherwise, mark it as exited (by set_thread_exited).
Function set_thread_exited is shared from delete_thread_1.  This patch
also moves field "refcount" to private and methods incref and
decref.  Additionally, we stop using "ptid_t" in
"struct current_thread_cleanup" to reference threads, instead we use
"thread_info" directly.  Due to this change, we don't need
restore_current_thread_ptid_changed anymore.

gdb:

2017-04-10  Yao Qi  <yao.qi@linaro.org>

	PR gdb/19942
	* gdbthread.h (thread_info::deletable): New method.
	(thread_info::incref): New method.
	(thread_info::decref): New method.
	(thread_info::refcount): Move it to private.
	* infrun.c (save_stop_context): Call inc_refcount.
	(release_stop_context_cleanup): Likewise.
	* thread.c (set_thread_exited): New function.
	(init_thread_list): Delete "tp" only it is deletable, otherwise
	call set_thread_exited.
	(delete_thread_1): Call set_thread_exited.
	(current_thread_cleanup) <inferior_pid>: Remove.
	<thread>: New field.
	(restore_current_thread_ptid_changed): Removed.
	(do_restore_current_thread_cleanup): Adjust.
	(restore_current_thread_cleanup_dtor): Don't call
	find_thread_ptid.
	(set_thread_refcount): Use dec_refcount.
	(make_cleanup_restore_current_thread): Adjust.
	(thread_apply_all_command): Call inc_refcount.
	(_initialize_thread): Don't call
	observer_attach_thread_ptid_changed.
jeffmahoney pushed a commit that referenced this pull request Nov 10, 2017
PR 21555 is caused by the exception during the prologue analysis when re-set
a breakpoint.

(gdb) bt
 #0  memory_error_message (err=TARGET_XFER_E_IO, gdbarch=0x153db50, memaddr=93824992233232) at ../../binutils-gdb/gdb/corefile.c:192
 #1  0x00000000005718ed in memory_error (err=TARGET_XFER_E_IO, memaddr=memaddr@entry=93824992233232) at ../../binutils-gdb/gdb/corefile.c:220
 #2  0x00000000005719d6 in read_memory_object (object=object@entry=TARGET_OBJECT_CODE_MEMORY, memaddr=93824992233232, memaddr@entry=1, myaddr=myaddr@entry=0x7fffffffd0a0 "P\333S\001", len=len@entry=1) at ../../binutils-gdb/gdb/corefile.c:259
 #3  0x0000000000571c6e in read_code (len=1, myaddr=0x7fffffffd0a0 "P\333S\001", memaddr=<optimized out>) at ../../binutils-gdb/gdb/corefile.c:287
 #4  read_code_unsigned_integer (memaddr=memaddr@entry=93824992233232, len=len@entry=1, byte_order=byte_order@entry=BFD_ENDIAN_LITTLE)                          at ../../binutils-gdb/gdb/corefile.c:362
 #5  0x000000000041d4a0 in amd64_analyze_prologue (gdbarch=gdbarch@entry=0x153db50, pc=pc@entry=93824992233232, current_pc=current_pc@entry=18446744073709551615, cache=cache@entry=0x7fffffffd1e0) at ../../binutils-gdb/gdb/amd64-tdep.c:2310
 #6  0x000000000041e404 in amd64_skip_prologue (gdbarch=0x153db50, start_pc=93824992233232) at ../../binutils-gdb/gdb/amd64-tdep.c:2459
 #7  0x000000000067bfb0 in skip_prologue_sal (sal=sal@entry=0x7fffffffd4e0) at ../../binutils-gdb/gdb/symtab.c:3628
 #8  0x000000000067c4d8 in find_function_start_sal (sym=sym@entry=0x1549960, funfirstline=1) at ../../binutils-gdb/gdb/symtab.c:3501
 #9  0x000000000060999d in symbol_to_sal (result=result@entry=0x7fffffffd5f0, funfirstline=<optimized out>, sym=sym@entry=0x1549960) at ../../binutils-gdb/gdb/linespec.c:3860
....
 #16 0x000000000054b733 in location_to_sals (b=b@entry=0x15792d0, location=0x157c230, search_pspace=search_pspace@entry=0x1148120, found=found@entry=0x7fffffffdc64) at ../../binutils-gdb/gdb/breakpoint.c:14211
 #17 0x000000000054c1f5 in breakpoint_re_set_default (b=0x15792d0) at ../../binutils-gdb/gdb/breakpoint.c:14301
 #18 0x00000000005412a9 in breakpoint_re_set_one (bint=bint@entry=0x15792d0) at ../../binutils-gdb/gdb/breakpoint.c:14412

This problem can be fixed by

 - either each prologue analyzer doesn't throw exception,
 - or catch the exception thrown from gdbarch_skip_prologue,

I choose the latter because the former needs to fix *every* prologue
analyzer to not throw exception.

This error can be reproduced by changing reread.exp.  The test reread.exp
has already test that breakpoint can be reset correctly after the
executable is re-read.  This patch extends this test by compiling test c
file with and without -fPIE.

(gdb) run ^M
The program being debugged has been started already.^M
Start it from the beginning? (y or n) y^M
x86_64/gdb/testsuite/outputs/gdb.base/reread/reread' has changed; re-reading symbols.
Error in re-setting breakpoint 1: Cannot access memory at address 0x555555554790^M
Error in re-setting breakpoint 2: Cannot access memory at address 0x555555554790^M
Starting program: /scratch/yao/gdb/build-git/x86_64/gdb/testsuite/outputs/gdb.base/reread/reread ^M
This is foo^M
[Inferior 1 (process 27720) exited normally]^M
(gdb) FAIL: gdb.base/reread.exp: opts= "-fPIE" "ldflags=-pie" : run to foo() second time (the program exited)

This patch doesn't re-indent the code, to keep the patch simple.

gdb:

2017-07-25  Yao Qi  <yao.qi@linaro.org>

	PR gdb/21555
	* arch-utils.c (gdbarch_skip_prologue_noexcept): New function.
	* arch-utils.h (gdbarch_skip_prologue_noexcept): Declare.
	* infrun.c: Include arch-utils.h
	(handle_step_into_function): Call gdbarch_skip_prologue_noexcept.
	(handle_step_into_function_backward): Likewise.
	* symtab.c (skip_prologue_sal): Likewise.

gdb/testsuite:

2017-07-25  Yao Qi  <yao.qi@linaro.org>

	PR gdb/21555
	* gdb.base/reread.exp: Wrap the whole test with two kinds of
	compilation flags, with -fPIE and without -fPIE.
ptesarik pushed a commit to ptesarik/gdb-python that referenced this pull request Apr 27, 2018
One test in gdb.compile/compile.exp passes on one fedora builder,

 bt
 #0  0x00007ffff7ff43f6 in _gdb_expr (__regs=0x7ffff7ff2000) at gdb
 command line:1^M
 crash-python#1  <function called from gdb>^M
 crash-python#2  main () at /home/gdb-buildbot/fedora-x86-64-1/fedora-x86-64/build/gdb/testsuite/../../../binutils-gdb/gdb/testsuite/gdb.compile/compile.c:106^M
 (gdb) PASS: gdb.compile/compile.exp: bt

but fails on my machine with gcc trunk,

 bt^M
 #0  _gdb_expr (__regs=0x7ffff7ff3000) at gdb command line:1^M
 crash-python#1  <function called from gdb>^M
 crash-python#2  main () at gdb/testsuite/gdb.compile/compile.c:106^M
 (gdb) FAIL: gdb.compile/compile.exp: bt

The test should be tweaked to match both cases (pc in the start of line
vs pc in the middle of line).  Note that I am not clear that why libcc1
emits debug info this way so that the address is in the middle of line.

gdb/testsuite:

2018-01-17  Yao Qi  <yao.qi@linaro.org>

	* gdb.compile/compile.exp: Match the address printed for
	frame in the output of command "bt".
ptesarik pushed a commit to ptesarik/gdb-python that referenced this pull request Apr 27, 2018
I got some crashes while doing some work with dwarf2_per_objfile.  It
turns out that dwarf2_per_objfile_free is using the dwarf2_per_objfile
objects after their destructor has ran.

The easiest way to reproduce this is to run the inferior twice (do
"start" twice).  Currently, it goes unnoticed, but when I tried to
change all_comp_units and all_type_units to std::vectors, things started
crashing.

The dwarf2_per_objfile objects get destroyed here:

 #0  dwarf2_per_objfile::~dwarf2_per_objfile (this=0x35afe70, __in_chrg=<optimized out>) at /home/emaisin/src/binutils-gdb/gdb/dwarf2read.c:2422
 crash-python#1  0x0000000000833282 in dwarf2_free_objfile (objfile=0x356cff0) at /home/emaisin/src/binutils-gdb/gdb/dwarf2read.c:25363
 crash-python#2  0x0000000000699255 in elf_symfile_finish (objfile=0x356cff0) at /home/emaisin/src/binutils-gdb/gdb/elfread.c:1309
 crash-python#3  0x0000000000911ed3 in objfile::~objfile (this=0x356cff0, __in_chrg=<optimized out>) at /home/emaisin/src/binutils-gdb/gdb/objfiles.c:674

and just after that the dwarf2read per-objfile registry cleanup function
gets called:

 #0  dwarf2_per_objfile_free (objfile=0x356cff0, d=0x35afe70) at /home/emaisin/src/binutils-gdb/gdb/dwarf2read.c:25667
 ... registry boilerplate ...
 crash-python#4  0x00000000009103ea in objfile_free_data (container=0x356cff0) at /home/emaisin/src/binutils-gdb/gdb/objfiles.c:61
 crash-python#5  0x0000000000911ee2 in objfile::~objfile (this=0x356cff0, __in_chrg=<optimized out>) at /home/emaisin/src/binutils-gdb/gdb/objfiles.c:678

In dwarf2_per_objfile_free, we access fields of the dwarf2_per_objfile
object, which is invalid since its destructor has been executed.

This patch moves the content of dwarf2_per_objfile_free to the
destructor of dwarf2_per_objfile.  The call to
register_objfile_data_with_cleanup in _initialize_dwarf2_read can be
changed to the simpler register_objfile_data.

gdb/ChangeLog:

	* dwarf2read.c (free_dwo_files): Add forward-declaration.
	(dwarf2_per_objfile::~dwarf2_per_objfile): Move content from
	dwarf2_per_objfile_free here.
	(dwarf2_per_objfile_free): Remove.
	(_initialize_dwarf2_read): Don't register
	dwarf2_per_objfile_free as a registry cleanup.
ptesarik pushed a commit to ptesarik/gdb-python that referenced this pull request Apr 27, 2018
When running the test gdb.dwarf2/dw2-bad-parameter-type.exp under
valgrind, I see the following issue reported (on x86-64 Fedora):

  (gdb) ptype f
  ==5203== Invalid read of size 1
  ==5203==    at 0x6931FE: process_die_scope::~process_die_scope() (dwarf2read.c:10642)
  ==5203==    by 0x66818F: process_die(die_info*, dwarf2_cu*) (dwarf2read.c:10664)
  ==5203==    by 0x66A01F: read_file_scope(die_info*, dwarf2_cu*) (dwarf2read.c:11650)
  ==5203==    by 0x667F2D: process_die(die_info*, dwarf2_cu*) (dwarf2read.c:10672)
  ==5203==    by 0x6677B6: process_full_comp_unit(dwarf2_per_cu_data*, language) (dwarf2read.c:10445)
  ==5203==    by 0x66657A: process_queue(dwarf2_per_objfile*) (dwarf2read.c:9945)
  ==5203==    by 0x6559B4: dw2_do_instantiate_symtab(dwarf2_per_cu_data*) (dwarf2read.c:3163)
  ==5203==    by 0x66683D: psymtab_to_symtab_1(partial_symtab*) (dwarf2read.c:10034)
  ==5203==    by 0x66622A: dwarf2_read_symtab(partial_symtab*, objfile*) (dwarf2read.c:9811)
  ==5203==    by 0x787984: psymtab_to_symtab(objfile*, partial_symtab*) (psymtab.c:792)
  ==5203==    by 0x786E3E: psym_lookup_symbol(objfile*, int, char const*, domain_enum_tag) (psymtab.c:522)
  ==5203==    by 0x804BD0: lookup_symbol_via_quick_fns(objfile*, int, char const*, domain_enum_tag) (symtab.c:2383)
  ==5203==  Address 0x147ed063 is 291 bytes inside a block of size 4,064 free'd
  ==5203==    at 0x4C2CD5A: free (vg_replace_malloc.c:530)
  ==5203==    by 0x444415: void xfree<void>(void*) (common-utils.h:60)
  ==5203==    by 0x9DA8C2: call_freefun (obstack.c:103)
  ==5203==    by 0x9DAD35: _obstack_free (obstack.c:280)
  ==5203==    by 0x44464C: auto_obstack::~auto_obstack() (gdb_obstack.h:73)
  ==5203==    by 0x68AFB0: dwarf2_cu::~dwarf2_cu() (dwarf2read.c:25080)
  ==5203==    by 0x68B204: free_one_cached_comp_unit(dwarf2_per_cu_data*) (dwarf2read.c:25174)
  ==5203==    by 0x66668C: dwarf2_release_queue(void*) (dwarf2read.c:9982)
  ==5203==    by 0x563A4C: do_my_cleanups(cleanup**, cleanup*) (cleanups.c:154)
  ==5203==    by 0x563AA7: do_cleanups(cleanup*) (cleanups.c:176)
  ==5203==    by 0x5646CE: throw_exception_cxx(gdb_exception) (common-exceptions.c:289)
  ==5203==    by 0x5647B7: throw_exception(gdb_exception) (common-exceptions.c:317)
  ==5203==  Block was alloc'd at
  ==5203==    at 0x4C2BBAD: malloc (vg_replace_malloc.c:299)
  ==5203==    by 0x564BE8: xmalloc (common-utils.c:44)
  ==5203==    by 0x9DA872: call_chunkfun (obstack.c:94)
  ==5203==    by 0x9DA935: _obstack_begin_worker (obstack.c:141)
  ==5203==    by 0x9DAA3C: _obstack_begin (obstack.c:164)
  ==5203==    by 0x4445E0: auto_obstack::auto_obstack() (gdb_obstack.h:70)
  ==5203==    by 0x68AE07: dwarf2_cu::dwarf2_cu(dwarf2_per_cu_data*) (dwarf2read.c:25073)
  ==5203==    by 0x661A8A: init_cutu_and_read_dies(dwarf2_per_cu_data*, abbrev_table*, int, int, void (*)(die_reader_specs const*, unsigned char const*, die_info*, int, void*), void*) (dwarf2read.c:7869)
  ==5203==    by 0x666A29: load_full_comp_unit(dwarf2_per_cu_data*, language) (dwarf2read.c:10108)
  ==5203==    by 0x655847: load_cu(dwarf2_per_cu_data*) (dwarf2read.c:3120)
  ==5203==    by 0x655928: dw2_do_instantiate_symtab(dwarf2_per_cu_data*) (dwarf2read.c:3148)
  ==5203==    by 0x66683D: psymtab_to_symtab_1(partial_symtab*) (dwarf2read.c:10034)

There's actually a series of three issues reported, but it turns out
they're all related, so we can consider on the first one.

The invalid read is triggered from a destructor which is being invoked
as part of a stack unwind after throwing an error.  At the time the
error is thrown, the stack looks like this:

    #0  0x00000000009f4ecd in __cxa_throw ()
    crash-python#1  0x0000000000564761 in throw_exception_cxx (exception=...) at ../../src/gdb/common/common-exceptions.c:303
    crash-python#2  0x00000000005647b8 in throw_exception (exception=...) at ../../src/gdb/common/common-exceptions.c:317
    crash-python#3  0x00000000005648ff in throw_it(return_reason, errors, const char *, typedef __va_list_tag __va_list_tag *) (reason=RETURN_ERROR,
        error=GENERIC_ERROR, fmt=0xb33020 "Dwarf Error: Cannot find DIE at 0x%x referenced from DIE at 0x%x [in module %s]",
        ap=0x7fff387f2d68) at ../../src/gdb/common/common-exceptions.c:373
    crash-python#4  0x0000000000564929 in throw_verror (error=GENERIC_ERROR,
        fmt=0xb33020 "Dwarf Error: Cannot find DIE at 0x%x referenced from DIE at 0x%x [in module %s]", ap=0x7fff387f2d68)
        at ../../src/gdb/common/common-exceptions.c:379
    crash-python#5  0x0000000000867be4 in verror (string=0xb33020 "Dwarf Error: Cannot find DIE at 0x%x referenced from DIE at 0x%x [in module %s]",
        args=0x7fff387f2d68) at ../../src/gdb/utils.c:251
    #6  0x000000000056879d in error (fmt=0xb33020 "Dwarf Error: Cannot find DIE at 0x%x referenced from DIE at 0x%x [in module %s]")
        at ../../src/gdb/common/errors.c:43
    #7  0x0000000000686875 in follow_die_ref (src_die=0x30bc8a0, attr=0x30bc8c8, ref_cu=0x7fff387f2ed0) at ../../src/gdb/dwarf2read.c:22969
    #8  0x00000000006844cd in lookup_die_type (die=0x30bc8a0, attr=0x30bc8c8, cu=0x30bc5d0) at ../../src/gdb/dwarf2read.c:21976
    #9  0x0000000000683f27 in die_type (die=0x30bc8a0, cu=0x30bc5d0) at ../../src/gdb/dwarf2read.c:21832
    #10 0x0000000000679b39 in read_subroutine_type (die=0x30bc830, cu=0x30bc5d0) at ../../src/gdb/dwarf2read.c:17343
    #11 0x00000000006845fb in read_type_die_1 (die=0x30bc830, cu=0x30bc5d0) at ../../src/gdb/dwarf2read.c:22035
    #12 0x0000000000684576 in read_type_die (die=0x30bc830, cu=0x30bc5d0) at ../../src/gdb/dwarf2read.c:22010
    #13 0x000000000067003f in read_func_scope (die=0x30bc830, cu=0x30bc5d0) at ../../src/gdb/dwarf2read.c:13822
    #14 0x0000000000667f5e in process_die (die=0x30bc830, cu=0x30bc5d0) at ../../src/gdb/dwarf2read.c:10679
    #15 0x000000000066a020 in read_file_scope (die=0x30bc720, cu=0x30bc5d0) at ../../src/gdb/dwarf2read.c:11650
    #16 0x0000000000667f2e in process_die (die=0x30bc720, cu=0x30bc5d0) at ../../src/gdb/dwarf2read.c:10672
    #17 0x00000000006677b7 in process_full_comp_unit (per_cu=0x3089b80, pretend_language=language_minimal)
        at ../../src/gdb/dwarf2read.c:10445
    #18 0x000000000066657b in process_queue (dwarf2_per_objfile=0x30897d0) at ../../src/gdb/dwarf2read.c:9945
    #19 0x00000000006559b5 in dw2_do_instantiate_symtab (per_cu=0x3089b80) at ../../src/gdb/dwarf2read.c:3163
    #20 0x000000000066683e in psymtab_to_symtab_1 (pst=0x3089bd0) at ../../src/gdb/dwarf2read.c:10034
    #21 0x000000000066622b in dwarf2_read_symtab (self=0x3089bd0, objfile=0x3073f40) at ../../src/gdb/dwarf2read.c:9811
    #22 0x0000000000787985 in psymtab_to_symtab (objfile=0x3073f40, pst=0x3089bd0) at ../../src/gdb/psymtab.c:792
    #23 0x0000000000786e3f in psym_lookup_symbol (objfile=0x3073f40, block_index=1, name=0x30b2e30 "f", domain=VAR_DOMAIN)
        at ../../src/gdb/psymtab.c:522
    #24 0x0000000000804bd1 in lookup_symbol_via_quick_fns (objfile=0x3073f40, block_index=1, name=0x30b2e30 "f", domain=VAR_DOMAIN)
        at ../../src/gdb/symtab.c:2383
    #25 0x0000000000804fe4 in lookup_symbol_in_objfile (objfile=0x3073f40, block_index=1, name=0x30b2e30 "f", domain=VAR_DOMAIN)
        at ../../src/gdb/symtab.c:2558
    #26 0x0000000000805125 in lookup_static_symbol (name=0x30b2e30 "f", domain=VAR_DOMAIN) at ../../src/gdb/symtab.c:2595
    #27 0x0000000000804357 in lookup_symbol_aux (name=0x30b2e30 "f", match_type=symbol_name_match_type::FULL, block=0x0,
        domain=VAR_DOMAIN, language=language_c, is_a_field_of_this=0x0) at ../../src/gdb/symtab.c:2105
    #28 0x0000000000803ad9 in lookup_symbol_in_language (name=0x30b2e30 "f", block=0x0, domain=VAR_DOMAIN, lang=language_c,
        is_a_field_of_this=0x0) at ../../src/gdb/symtab.c:1887
    #29 0x0000000000803b53 in lookup_symbol (name=0x30b2e30 "f", block=0x0, domain=VAR_DOMAIN, is_a_field_of_this=0x0)
        at ../../src/gdb/symtab.c:1899
    #30 0x000000000053b246 in classify_name (par_state=0x7fff387f6090, block=0x0, is_quoted_name=false, is_after_structop=false)
        at ../../src/gdb/c-exp.y:2879
    #31 0x000000000053b7e9 in c_yylex () at ../../src/gdb/c-exp.y:3083
    #32 0x000000000053414a in c_yyparse () at c-exp.c:1903
    #33 0x000000000053c2e7 in c_parse (par_state=0x7fff387f6090) at ../../src/gdb/c-exp.y:3255
    #34 0x0000000000774a02 in parse_exp_in_context_1 (stringptr=0x7fff387f61c0, pc=0, block=0x0, comma=0, void_context_p=0, out_subexp=0x0)
        at ../../src/gdb/parse.c:1213
    #35 0x000000000077476a in parse_exp_in_context (stringptr=0x7fff387f61c0, pc=0, block=0x0, comma=0, void_context_p=0, out_subexp=0x0)
        at ../../src/gdb/parse.c:1115
    #36 0x0000000000774714 in parse_exp_1 (stringptr=0x7fff387f61c0, pc=0, block=0x0, comma=0) at ../../src/gdb/parse.c:1106
    #37 0x0000000000774c53 in parse_expression (string=0x27ff996 "f") at ../../src/gdb/parse.c:1253
    #38 0x0000000000861dc4 in whatis_exp (exp=0x27ff996 "f", show=1) at ../../src/gdb/typeprint.c:472
    #39 0x00000000008620d8 in ptype_command (type_name=0x27ff996 "f", from_tty=1) at ../../src/gdb/typeprint.c:561
    #40 0x000000000047430b in do_const_cfunc (c=0x3012010, args=0x27ff996 "f", from_tty=1) at ../../src/gdb/cli/cli-decode.c:106
    #41 0x000000000047715e in cmd_func (cmd=0x3012010, args=0x27ff996 "f", from_tty=1) at ../../src/gdb/cli/cli-decode.c:1886
    #42 0x00000000008431bb in execute_command (p=0x27ff996 "f", from_tty=1) at ../../src/gdb/top.c:630
    #43 0x00000000006bf946 in command_handler (command=0x27ff990 "ptype f") at ../../src/gdb/event-top.c:583
    #44 0x00000000006bfd12 in command_line_handler (rl=0x30bb3a0 "\240\305\v\003") at ../../src/gdb/event-top.c:774

The problem is that in `process_die` (frames 14 and 16) we create a
`process_die_scope` object, that takes a copy of the `struct
dwarf2_cu *` passed into the frame.  The destructor of the
`process_die_scope` dereferences the stored pointer.  This wouldn't be
an issue, except...

... in dw2_do_instantiate_symtab (frame 19) a clean up was registered that
clears the dwarf2_queue in case of an error.  Part of this clean up
involves deleting the `struct dwarf2_cu`s referenced from the queue..

The problem then, is that cleanups are processed at the site of the
throw, while, class destructors are invoked as we unwind their frame.
The result is that we process the frame 19 cleanup (and delete the
struct dwarf2_cu) before we process the destructors in frames 14 and 16.
When we do get back to frames 14 and 16 the objects being references
have already been deleted.

The solution is to remove the cleanup from dw2_do_instantiate_symtab, and
instead use a destructor to release the dwarf2_queue instead.  With this
patch in place, the valgrind errors are now resolved.

gdb/ChangeLog:

	* dwarf2read.c (dwarf2_release_queue): Delete function, move body
	into...
	(class dwarf2_queue_guard): ...the destructor of this new class.
	(dw2_do_instantiate_symtab): Create instance of the new class
	dwarf2_queue_guard, remove cleanup.
ptesarik pushed a commit to ptesarik/gdb-python that referenced this pull request Apr 27, 2018
In https://sourceware.org/ml/gdb-patches/2017-06/msg00741.html,
Pedro asks:

> Doesn't the "info verbose on" bit affect frame filters too?

The answer is that yes, it could.  However, it's not completely
effective, because the C code can't guess how many frames might need
to be unwound to satisfy the request -- a frame filter will request as
many frames as it needs.

Also, I tried removing this code from backtrace, and I think the
result is better without it.  In particular, now the expansion line
occurs just before the frame that caused the expansion, like:

    (gdb) bt no-filters
    #0  0x00007ffff576cecd in poll () from /lib64/libc.so.6
    Reading in symbols for ../../binutils-gdb/gdb/event-loop.c...done.
    crash-python#1  0x00000000007ecc33 in gdb_wait_for_event (block=1)
	at ../../binutils-gdb/gdb/event-loop.c:772
    crash-python#2  0x00000000007ec006 in gdb_do_one_event ()
	at ../../binutils-gdb/gdb/event-loop.c:347
    crash-python#3  0x00000000007ec03e in start_event_loop ()
	at ../../binutils-gdb/gdb/event-loop.c:371
    Reading in symbols for ../../binutils-gdb/gdb/main.c...done.
    crash-python#4  0x000000000086693d in captured_command_loop (
	Reading in symbols for ../../binutils-gdb/gdb/exceptions.c...done.
    data=0x0) at ../../binutils-gdb/gdb/main.c:325

So, I am proposing this patch to simply remove this code.

gdb/ChangeLog
2018-03-26  Tom Tromey  <tom@tromey.com>

	* stack.c (backtrace_command_1): Remove verbose code.
ptesarik pushed a commit to ptesarik/gdb-python that referenced this pull request Apr 27, 2018
A future patch will propose making the remote target's target_ops be
heap-allocated (to make it possible to have multiple instances of
remote targets, for multiple simultaneous connections), and will
delete/destroy the remote target at target_close time.

That change trips on a latent problem, though.  File I/O handles
remain open even after the target is gone, with a dangling pointer to
a target that no longer exists.  This results in GDB crashing when it
calls the target_ops backend associated with the file handle:

 (gdb) Disconnect
 Ending remote debugging.
 * GDB crashes deferencing a dangling pointer

Backtrace:

   #0  0x00007f79338570a0 in main_arena () at /lib64/libc.so.6
   crash-python#1  0x0000000000858bfe in target_fileio_close(int, int*) (fd=1, target_errno=0x7ffe0499a4c8)
       at src/gdb/target.c:2980
   crash-python#2  0x00000000007088bd in gdb_bfd_iovec_fileio_close(bfd*, void*) (abfd=0x1a631b0, stream=0x223c9d0)
       at src/gdb/gdb_bfd.c:353
   crash-python#3  0x0000000000930906 in opncls_bclose (abfd=0x1a631b0) at src/bfd/opncls.c:528
   crash-python#4  0x0000000000930cf9 in bfd_close_all_done (abfd=0x1a631b0) at src/bfd/opncls.c:768
   crash-python#5  0x0000000000930cb3 in bfd_close (abfd=0x1a631b0) at src/bfd/opncls.c:735
   #6  0x0000000000708dc5 in gdb_bfd_close_or_warn(bfd*) (abfd=0x1a631b0) at src/gdb/gdb_bfd.c:511
   #7  0x00000000007091a2 in gdb_bfd_unref(bfd*) (abfd=0x1a631b0) at src/gdb/gdb_bfd.c:615
   #8  0x000000000079ed8e in objfile::~objfile() (this=0x2154730, __in_chrg=<optimized out>)
       at src/gdb/objfiles.c:682
   #9  0x000000000079fd1a in objfile_purge_solibs() () at src/gdb/objfiles.c:1065
   #10 0x00000000008162ca in no_shared_libraries(char const*, int) (ignored=0x0, from_tty=1)
       at src/gdb/solib.c:1251
   #11 0x000000000073b89b in disconnect_command(char const*, int) (args=0x0, from_tty=1)
       at src/gdb/infcmd.c:3035

This goes unnoticed in current master, because the current remote
target's target_ops is never destroyed nowadays, so we end up calling:

  remote_hostio_close -> remote_hostio_send_command

which gracefully fails with FILEIO_ENOSYS if remote_desc is NULL
(because the target is closed).

Fix this by invalidating a target's file I/O handles when the target
is closed.

With this change, remote_hostio_send_command no longer needs to handle the
case of being called with a closed remote target, originally added here:
<https://sourceware.org/ml/gdb-patches/2008-08/msg00359.html>.

gdb/ChangeLog:
2018-04-11  Pedro Alves  <palves@redhat.com>

	* target.c (fileio_fh_t::t): Add comment.
	(target_fileio_pwrite, target_fileio_pread, target_fileio_fstat)
	(target_fileio_close): Handle a NULL target.
	(invalidate_fileio_fh): New.
	(target_close): Call it.
	* remote.c (remote_hostio_send_command): No longer check whether
	remote_desc is open.
ptesarik pushed a commit to ptesarik/gdb-python that referenced this pull request Jun 5, 2018
This patch makes it possible to use an integer immediate with the fmov instructions
allowing you to simply write fmov d0, crash-python#2 instead of needing fmov d0, crash-python#2.0.

The parse double function already know to deal with this so we just need to list the
restriction put in place in parser.

The is considered a QoL improvement for hand assembly writers and allows more
code portability between assembler.

gas/

	* config/tc-aarch64.c (parse_aarch64_imm_float): Remove restrictions.
	* testsuite/gas/aarch64/diagnostic.s: Move fmov int test to..
	* testsuite/gas/aarch64/fpmov.s: Here.
	* testsuite/gas/aarch64/fpmov.d: Update results with fmov.
	* testsuite/gas/aarch64/diagnostic.l: Remove fmov values.
	* testsuite/gas/aarch64/sve-invalid.s: Update test files.
	* testsuite/gas/aarch64/sve-invalid.l: Likewise
ptesarik pushed a commit to ptesarik/gdb-python that referenced this pull request Jun 27, 2018
Currently, gdb.gdb/selftest.exp fails if you build GDB with
optimization (-O2, etc.).

The reason is that after setting a breakpoint in captured_main, we
stop at:
 ...
 Breakpoint 1, captured_main_1 (context=<optimized out>) at src/gdb/main.c:492
 ...
while selftest_setup expects a stop at captured_main.

Here, captured_main_1 has been inlined into captured_main, and
captured_main has been inlined into gdb_main:

 ...
 $ nm ./build/gdb/gdb | egrep ' [tT] .*captured_main|gdb_main' | c++filt
 000000000061b950 T gdb_main(captured_main_args*)
 ...

Indeed, the two inlined functions show up in the backtrace:

 ...
 (gdb) bt
 #0  captured_main_1 (context=<optimized out>) at main.c:492
 crash-python#1  captured_main (data=<optimized out>) at main.c:1147
 crash-python#2  gdb_main (args=args@entry=0x7fffffffdb80) at main.c:1173
 crash-python#3  0x000000000040fea5 in main (argc=<optimized out>, argv=<optimized out>)
     at gdb.c:32
 ...

We're now stopping at captured_main_1 because commit ddfe970
("Don't elide all inlined frames") makes GDB present a stop at the
innermost inlined frame if the program stopped by a user breakpoint.

Now, the selftest.exp testcase explicitly asks to stop at
"captured_main", not "captured_main_1", so I'm thinking that it's
GDB'S behavior that should be improved.  That is what this commit
does, by only showing a stop at an inline frame if the user breakpoint
was set in that frame's block.

Before this commit:

 (top-gdb) b captured_main
 Breakpoint 1 at 0x792f99: file src/gdb/main.c, line 492.
 (top-gdb) r
 Starting program: build/gdb/gdb

 Breakpoint 1, captured_main_1 (context=<optimized out>) at src/gdb/main.c:492
 492       lim_at_start = (char *) sbrk (0);
 (top-gdb)

After this commit, we now instead get:

 (top-gdb) b captured_main
 Breakpoint 1 at 0x791339: file src/gdb/main.c, line 492.
 (top-gdb) r
 Starting program: build/gdb/gdb

 Breakpoint 1, captured_main (data=<optimized out>) at src/gdb/main.c:1147
 1147      captured_main_1 (context);
 (top-gdb)

and:

 (top-gdb) b captured_main_1
 Breakpoint 2 at 0x791339: file src/gdb/main.c, line 492.
 (top-gdb) r
 Starting program: build/gdb/gdb
 Breakpoint 2, captured_main_1 (context=<optimized out>) at src/gdb/main.c:492
 492       lim_at_start = (char *) sbrk (0);
 (top-gdb)

Note that both captured_main and captured_main_1 resolved to the same
address, 0x791339.  That is necessary to trigger the issue in
question.  The gdb.base/inline-break.exp testcase currently does not
exercise that, but the new test added by this commit does.  That new
test fails without the GDB fix and passes with the fix.  No
regressions on x86-64 GNU/Linux.

While at it, the THIS_PC comparison in stopped_by_user_bp_inline_frame
is basically a nop, so just remove it -- if a software or hardware
breakpoint explains the stop, then it must be that it was installed at
the current PC.

gdb/ChangeLog:
2018-06-19  Pedro Alves  <palves@redhat.com>

	* inline-frame.c (stopped_by_user_bp_inline_frame): Replace PC
	parameter with a block parameter.  Compare location's block symbol
	with the frame's block instead of addresses.
	(skip_inline_frames): Pass the current block instead of the
	frame's address.  Break out as soon as we determine the frame
	should not be skipped.

gdb/testsuite/ChangeLog:
2018-06-19  Pedro Alves  <palves@redhat.com>

	* gdb.opt/inline-break.c (func_inline_callee, func_inline_caller)
	(func_extern_caller): New.
	(main): Call func_extern_caller.
	* gdb.opt/inline-break.exp: Add tests for inline frame skipping
	logic change.
jeffmahoney pushed a commit that referenced this pull request Jun 29, 2018
M68HC11_LAST_HARD_REG is 8, but m68hc11 register number is started from 0,
so there are 9 raw registers, but M68HC11_NUM_REGS is 8 by mistake.

My following unit test can find this issue (GDB is built with asan)

=================================================================
==15555==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000113150 at pc 0x51393f bp 0x7fffcec36f60 sp 0x7fffcec36f58
WRITE of size 2 at 0x602000113150 thread T0
    #0 0x51393e in m68hc11_pseudo_register_read gdb/m68hc11-tdep.c:320
    #1 0xc4b620 in gdbarch_pseudo_register_read(gdbarch*, regcache*, int, unsigned char*) gdb/gdbarch.c:1974
    #2 0xddad88 in regcache::cooked_read(int, unsigned char*) gdb/regcache.c:710
    #3 0xddff2b in cooked_read_test gdb/regcache.c:1850
    #4 0xdf8cfb in selftests::gdbarch_selftest::operator()() const gdb/selftest-arch.c:73

gdb:

2017-11-15  Yao Qi  <yao.qi@linaro.org>

	* m68hc11-tdep.c (M68HC11_NUM_REGS): Change it to
	M68HC11_LAST_HARD_REG + 1.
jeffmahoney pushed a commit that referenced this pull request Jun 29, 2018
If you have a breakpoint command that re-resumes the target, like:

  break foo
  commands
  > c
  > end

and then let the inferior run, hitting the breakpoint, and then press
Ctrl-C at just the right time, between GDB processing the stop at
"foo", and re-resuming the target, you'll hit the QUIT call in
infrun.c:resume.

With this hack, we can reproduce the bad case consistently:

  --- a/gdb/inf-loop.c
  +++ b/gdb/inf-loop.c
  @@ -31,6 +31,8 @@
   #include "top.h"
   #include "observer.h"

  +bool continue_hack;
  +
   /* General function to handle events in the inferior.  */

   void
  @@ -64,6 +66,8 @@ inferior_event_handler (enum inferior_event_type event_type,
	  {
	    check_frame_language_change ();

  +         continue_hack = true;
  +
	    /* Don't propagate breakpoint commands errors.  Either we're
	       stopping or some command resumes the inferior.  The user will
	       be informed.  */
  diff --git a/gdb/infrun.c b/gdb/infrun.c
  index d425664..c74b14c 100644
  --- a/gdb/infrun.c
  +++ b/gdb/infrun.c
  @@ -2403,6 +2403,10 @@ resume (enum gdb_signal sig)
     gdb_assert (!tp->stop_requested);
     gdb_assert (!thread_is_in_step_over_chain (tp));

  +  extern bool continue_hack;
  +
  +  if (continue_hack)
  +    set_quit_flag ();
     QUIT;

The GDB backtrace looks like this:

  (top-gdb) bt
  ...
  #3  0x0000000000612e8b in throw_quit(char const*, ...) (fmt=0xaf84a1 "Quit") at src/gdb/common/common-exceptions.c:408
  #4  0x00000000007fc104 in quit() () at src/gdb/utils.c:748
  #5  0x00000000006a79d2 in default_quit_handler() () at src/gdb/event-top.c:954
  #6  0x00000000007fc134 in maybe_quit() () at src/gdb/utils.c:762
  #7  0x00000000006f66a3 in resume(gdb_signal) (sig=GDB_SIGNAL_0) at src/gdb/infrun.c:2406
  #8  0x0000000000700c3d in keep_going_pass_signal(execution_control_state*) (ecs=0x7ffcf3744e60) at src/gdb/infrun.c:7793
  #9  0x00000000006f5fcd in start_step_over() () at src/gdb/infrun.c:2145
  #10 0x00000000006f7b1f in proceed(unsigned long, gdb_signal) (addr=18446744073709551615, siggnal=GDB_SIGNAL_DEFAULT)
      at src/gdb/infrun.c:3135
  #11 0x00000000006ebdd4 in continue_1(int) (all_threads=0) at src/gdb/infcmd.c:842
  #12 0x00000000006ec097 in continue_command(char*, int) (args=0x0, from_tty=0) at src/gdb/infcmd.c:938
  #13 0x00000000004b5140 in do_cfunc(cmd_list_element*, char*, int) (c=0x2d18570, args=0x0, from_tty=0)
      at src/gdb/cli/cli-decode.c:106
  #14 0x00000000004b8219 in cmd_func(cmd_list_element*, char*, int) (cmd=0x2d18570, args=0x0, from_tty=0)
      at src/gdb/cli/cli-decode.c:1952
  #15 0x00000000007f1532 in execute_command(char*, int) (p=0x7ffcf37452b1 "", from_tty=0) at src/gdb/top.c:608
  #16 0x00000000004bd127 in execute_control_command(command_line*) (cmd=0x3a88ef0) at src/gdb/cli/cli-script.c:485
  #17 0x00000000005cae0c in bpstat_do_actions_1(bpstat*) (bsp=0x37edcf0) at src/gdb/breakpoint.c:4513
  #18 0x00000000005caf67 in bpstat_do_actions() () at src/gdb/breakpoint.c:4563
  #19 0x00000000006e8798 in inferior_event_handler(inferior_event_type, void*) (event_type=INF_EXEC_COMPLETE, client_data=0x0)
      at src/gdb/inf-loop.c:72
  #20 0x00000000006f9447 in fetch_inferior_event(void*) (client_data=0x0) at src/gdb/infrun.c:3970
  #21 0x00000000006e870e in inferior_event_handler(inferior_event_type, void*) (event_type=INF_REG_EVENT, client_data=0x0)
      at src/gdb/inf-loop.c:43
  #22 0x0000000000494d58 in remote_async_serial_handler(serial*, void*) (scb=0x3585ca0, context=0x2cd1b80)
      at src/gdb/remote.c:13820
  #23 0x000000000044d682 in run_async_handler_and_reschedule(serial*) (scb=0x3585ca0) at src/gdb/ser-base.c:137
  #24 0x000000000044d767 in fd_event(int, void*) (error=0, context=0x3585ca0) at src/gdb/ser-base.c:188
  #25 0x00000000006a5686 in handle_file_event(file_handler*, int) (file_ptr=0x45997d0, ready_mask=1)
      at src/gdb/event-loop.c:733
  #26 0x00000000006a5c29 in gdb_wait_for_event(int) (block=1) at src/gdb/event-loop.c:859
  #27 0x00000000006a4aa6 in gdb_do_one_event() () at src/gdb/event-loop.c:347
  #28 0x00000000006a4ade in start_event_loop() () at src/gdb/event-loop.c:371

and when that happens, you end up with GDB's run control in quite a
messed up state.  Something like this:

  thread_function1 (arg=0x1) at threads.c:107
  107             usleep (SLEEP);  /* Loop increment.  */
  Quit
  (gdb) c
  Continuing.
  ** nothing happens, time passes..., press ctrl-c again **
  ^CQuit
  (gdb) info threads
    Id   Target Id         Frame
    1    Thread 1462.1462 "threads" (running)
  * 2    Thread 1462.1466 "threads" (running)
    3    Thread 1462.1465 "function0" (running)
  (gdb) c
  Cannot execute this command while the selected thread is running.
  (gdb)

The first "Quit" above is thrown from within "resume", and cancels run
control while GDB is in the middle of stepping over a breakpoint.
with step_over_info_valid_p() true.  The next "c" didn't actually
resume anything, because GDB throught that the step-over was still in
progress.  It wasn't, because the thread that was supposed to be
stepping over the breakpoint wasn't actually resumed.

So at this point, we press Ctrl-C again, and this time, the default
quit handler is called directly from the event loop
(event-top.c:default_quit_handler -> quit()), because gdb was left
owning the terminal (because the previous resume was cancelled before
we reach target_resume -> target_terminal::inferior()).

Note that the exception called from within resume ends up calling
normal_stop via resume_cleanups.  That's very borked though, because
normal_stop is going to re-handle whatever was the last reported
event, possibly even re-running a hook stop...  I think that the only
sane way to safely cancel the run control state machinery is to push
an event via handle_inferior_event like all other events.

The fix here does two things, and either alone would fix the problem
at hand:

#1 - passes the terminal to the inferior earlier, so that any QUIT
     call from the point we declare the target as running goes to the
     inferior directly, protecting run control from unsafe QUIT calls.

#2 - gets rid of this QUIT call in resume and of its related unsafe
     resume_cleanups.

Aboout #2, the comment describing resume says:

  /* Resume the inferior, but allow a QUIT.  This is useful if the user
     wants to interrupt some lengthy single-stepping operation
     (for child processes, the SIGINT goes to the inferior, and so
     we get a SIGINT random_signal, but for remote debugging and perhaps
     other targets, that's not true).

but that's a really old comment that predates a lot of fixes to Ctrl-C
handling throughout both GDB core and the remote target, that made
sure that a Ctrl-C isn't ever lost.  In any case, if some target
depended on this, a much better fix would be to make the target return
a SIGINT stop out of target_wait the next time that is called.

This was exposed by the new gdb.base/bp-cmds-continue-ctrl-c.exp
testcase added later in the series.

gdb/ChangeLog:
2017-11-16  Pedro Alves  <palves@redhat.com>

	* infrun.c (resume_cleanups): Delete.
	(resume): No longer install a resume_cleanups cleanup nor call
	QUIT.
	(proceed): Pass the terminal to the inferior.
	(keep_going_pass_signal): No longer install a resume_cleanups
	cleanup.
jeffmahoney pushed a commit that referenced this pull request Jun 29, 2018
Target descriptions are allocated lazily, that is fine in GDBserver,
but it is not safe to call malloc in gdb_collect in IPA, because we
can set a fast tracepoint in malloc, and when the tracepoint is hit,
gdb_collect/malloc is called, deadlock or memory corruption may be
triggered.

 #0  0xf7cfc200 in malloc ()
 #1  0xf7efdc07 in operator new(unsigned int) ()
 #2  0xf7ef7636 in allocate_target_description() ()
 #3  0xf7efcbe1 in i386_create_target_description(unsigned long long, bool) ()
 #4  0xf7efb474 in i386_linux_read_description(unsigned long long) ()
 #5  0xf7efb190 in get_ipa_tdesc(int) ()
 #6  0xf7ef9baa in gdb_collect ()

The fix is to initialize all target descriptions earlier, when the
IPA is loaded.  In order to guarantee malloc is not called in IPA
in gdb_collect, I change the test to set a breakpoint on malloc, if
IPA gdb_collect calls malloc, program will hit the breakpoint, and
test fail.

continue
Continuing.

Thread 1 "" hit Breakpoint 5, 0xf7cfc200 in malloc ()
(gdb) FAIL: gdb.trace/ftrace.exp: advance through tracing

gdb/gdbserver:

2017-12-07  Yao Qi  <yao.qi@linaro.org>

	* linux-aarch64-ipa.c (initialize_low_tracepoint): Call
	aarch64_linux_read_description.
	* linux-amd64-ipa.c (idx2mask): New array.
	(get_ipa_tdesc): Move idx2mask out.
	(initialize_low_tracepoint): Initialize target descriptions.
	* linux-i386-ipa.c (idx2mask): New array.
	(get_ipa_tdesc): Move idx2mask out.
	(initialize_low_tracepoint): Initialize target descriptions.

gdb/testsuite:

2017-12-07  Yao Qi  <yao.qi@linaro.org>

	* gdb.trace/ftrace.exp (run_trace_experiment): Set breakpoint on
	malloc and catch syscall.
jeffmahoney pushed a commit that referenced this pull request Jun 29, 2018
…8653#c7)

At https://sourceware.org/bugzilla/show_bug.cgi?id=18653#c7, Andrew
reports that the fix for PR gdb/18653 made GDB useless if you preload
libSegFault.so, because GDB internal-errors on startup:

 $ LD_PRELOAD=libSegFault.so gdb
 src/gdb/common/signals-state-save-restore.c:64: internal-error: unexpected signal handler
 A problem internal to GDB has been detected,
 further debugging may prove unreliable.
 Aborted (core dumped)
 $

The internal error comes from the code saving the signal dispositions
inherited from gdb's parent:

 (top-gdb) bt
 #0  0x000000000056b001 in internal_error(char const*, int, char const*, ...) (file=0xaf5f38 "src/gdb/common/signals-state-save-restore.c", line=64, fmt=0xaf5f18 "unexpected signal handler") at src/gdb/common/errors.c:54
 #1  0x00000000005752c9 in save_original_signals_state() () at src/gdb/common/signals-state-save-restore.c:64
 #2  0x00000000007425de in captured_main_1(captured_main_args*) (context=0x7fffffffd860)
     at src/gdb/main.c:509
 #3  0x0000000000743622 in captured_main(void*) (data=0x7fffffffd860) at src/gdb/main.c:1145
 During symbol reading, cannot get low and high bounds for subprogram DIE at 24065.
 #4  0x00000000007436f9 in gdb_main(captured_main_args*) (args=0x7fffffffd860) at src/gdb/main.c:1171
 #5  0x0000000000413acd in main(int, char**) (argc=1, argv=0x7fffffffd968) at src/gdb/gdb.c:32

This commit downgrades the internal error to a warning.  You'll get
instead:

~~~
 $ LD_PRELOAD=libSegFault.so gdb
 warning: Found custom handler for signal 11 (Segmentation fault) preinstalled.
 Some signal dispositions inherited from the environment (SIG_DFL/SIG_IGN)
 won't be propagated to spawned programs.
 GNU gdb (GDB) 8.0.50.20171213-git
 Copyright (C) 2017 Free Software Foundation, Inc.
 License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
 This is free software: you are free to change and redistribute it.
 There is NO WARRANTY, to the extent permitted by law.  Type "show copying"
 and "show warranty" for details.
 This GDB was configured as "x86_64-pc-linux-gnu".
 Type "show configuration" for configuration details.
 For bug reporting instructions, please see:
 <http://www.gnu.org/software/gdb/bugs/>.
 Find the GDB manual and other documentation resources online at:
 <http://www.gnu.org/software/gdb/documentation/>.
 For help, type "help".
 Type "apropos word" to search for commands related to "word"...
 (gdb)
~~~

This also moves the location where save_original_signals_state is
called a bit further below (to after option processing), so that "-q"
disables the warning:

~~~
 $ LD_PRELOAD=libSegFault.so gdb -q
 (gdb)
~~~

New testcase included.

gdb/ChangeLog:
2018-01-05  Pedro Alves  <palves@redhat.com>

	PR gdb/18653
	* common/signals-state-save-restore.c
	(save_original_signals_state): New parameter 'quiet'.  Warn if we
	find a custom handler preinstalled, instead of internal erroring.
	But only warn if !quiet.
	* common/signals-state-save-restore.h
	(save_original_signals_state): New parameter 'quiet'.
	* main.c (captured_main_1): Move save_original_signals_state call
	after option handling, and pass QUIET.

gdb/gdbserver/ChangeLog:
2018-01-05  Pedro Alves  <palves@redhat.com>

	PR gdb/18653
	* server.c (captured_main): Pass quiet=false to
	save_original_signals_state.

gdb/testsuite/ChangeLog:
2018-01-05  Pedro Alves  <palves@redhat.com>

	PR gdb/18653
	* gdb.base/libsegfault.exp: New.
jeffmahoney pushed a commit that referenced this pull request Jun 29, 2018
At <https://sourceware.org/ml/gdb-patches/2017-12/msg00285.html>,
Maciej reported that commit:

  commit 5cd63fd
  Date: Wed Oct 4 18:21:10 2017 +0100
  Subject: Fix "Remote 'g' packet reply is too long" problems with multiple inferiors

made GDB stop working with older stubs.  Any attempt to continue
execution after the initial connection fails with:

  [...]
  Process .../gdb/testsuite/outputs/gdb.base/advance/advance created; pid = 2670
  Listening on port 2346
  target remote [...]:2346
  Remote debugging using [...]:2346
  Reading symbols from .../lib64/ld.so.1...done.
  [Switching to Thread <main>]
  (gdb) continue
  Cannot execute this command without a live selected thread.
  (gdb)

The problem is:

  (gdb) c
  Cannot execute this command without a live selected thread.
  (gdb) info threads
    Id   Target Id         Frame
    1    Thread 14917      0x00007f341cd98ed0 in _start () from /lib64/ld-linux-x86-64.so.2

  The current thread <Thread ID 2> has terminated.  See `help thread'.
		      ^^^^^^^^^^^
  (gdb)

Note, thread _2_.  There's really only one thread in the inferior
(it's still at the entry point), but still GDB added a bogus second
thread.

The reason GDB started adding a second thread after 5cd63fd is
this hunk:

+                 if (event->ptid == null_ptid)
+                   {
+                     const char *thr = strstr (p1 + 1, ";thread:");
+                     if (thr != NULL)
+                       event->ptid = read_ptid (thr + strlen (";thread:"),
+                                                NULL);
+                     else
+                       event->ptid = magic_null_ptid;
+                   }

Note the else branch that falls back to magic_null_ptid.  We reach
that when we process the initial stop reply sent back in response to
the the "?" (status) packet early in the connection setup:

 Sending packet: $?#3f...Ack
 Packet received: T0506:0000000000000000;07:40a510f4fd7f0000;10:d0fe1201577f0000;

And note that that response does not include a ";thread:XXX" part.

This stop reply is processed after listing threads with qfThreadInfo /
qsThreadInfo :

 Sending packet: $qfThreadInfo#bb...Ack
 Packet received: m3915
 Sending packet: $qsThreadInfo#c8...Ack
 Packet received: l

meaning, when we process that stop reply, we treat the event as coming
from a thread with ptid == magic_null_ptid, which is not yet in the
thread list, so we add it then:

  (top-gdb) p ptid
  $1 = {m_pid = 42000, m_lwp = -1, m_tid = 1}
  (top-gdb) bt
  #0  0x0000000000840a8c in add_thread_silent(ptid_t) (ptid=...) at src/gdb/thread.c:269
  #1  0x00000000007ad61d in remote_add_thread(ptid_t, int, int) (ptid=..., running=0, executing=0)
      at src/gdb/remote.c:1838
  #2  0x00000000007ad8de in remote_notice_new_inferior(ptid_t, int) (currthread=..., executing=0)
      at src/gdb/remote.c:1921
  #3  0x00000000007b758b in process_stop_reply(stop_reply*, target_waitstatus*) (stop_reply=0x1158860, status=0x7fffffffcc00)
      at src/gdb/remote.c:7217
  #4  0x00000000007b7a38 in remote_wait_as(ptid_t, target_waitstatus*, int) (ptid=..., status=0x7fffffffcc00, options=0)
      at src/gdb/remote.c:7380
  #5  0x00000000007b7cd1 in remote_wait(target_ops*, ptid_t, target_waitstatus*, int) (ops=0x102fac0 <remote_ops>, ptid=..., status=0x7fffffffcc00, options=0) at src/gdb/remote.c:7446
  #6  0x000000000081587b in delegate_wait(target_ops*, ptid_t, target_waitstatus*, int) (self=0x102fac0 <remote_ops>, arg1=..., arg2=0x7fffffffcc00, arg3=0) at src/gdb/target-delegates.c:138
  #7  0x0000000000827d77 in target_wait(ptid_t, target_waitstatus*, int) (ptid=..., status=0x7fffffffcc00, options=0)
      at src/gdb/target.c:2179
  #8  0x0000000000715fda in do_target_wait(ptid_t, target_waitstatus*, int) (ptid=..., status=0x7fffffffcc00, options=0)
      at src/gdb/infrun.c:3589
  #9  0x0000000000716351 in wait_for_inferior() () at src/gdb/infrun.c:3707
  #10 0x0000000000715435 in start_remote(int) (from_tty=1) at src/gdb/infrun.c:3212

things go downhill from this.

We don't see the problem with current master gdbserver, because that
version always sends the ";thread:" part in the initial stop reply:

 Sending packet: $?#3f...Packet received: T0506:0000000000000000;07:a0d4ffffff7f0000;10:d05eddf7ff7f0000;thread:p3cea.3cea;core:3;

Years ago I had added a "--disable-packet=" command line option to
gdbserver which comes in handy for testing this, since the existing
"--disable-packet=Tthread" precisely makes gdbserver not send that
";thread:" part in stop replies.  The testcase added by this commit
emulates old gdbserver making use of that.

I've compared a testrun at 5cd63fd^ (before regression) with
'current master+patch', against old gdbserver at f8b73d1^.  I
hacked out --once, and "monitor exit" to be able to test.  The results
are a bit too unstable to tell accurately, but it looked like there
were no regressions.  Maciej confirmed this worked for him as well.

No regressions on master (against master gdbserver).

gdb/ChangeLog:
2018-01-11  Pedro Alves  <palves@redhat.com>

	PR remote/22597
	* remote.c (remote_parse_stop_reply): Default to the last-set
	general thread instead of to 'magic_null_ptid'.

gdb/testsuite/ChangeLog:
2018-01-11  Pedro Alves  <palves@redhat.com>

	PR remote/22597
	* gdb.server/stop-reply-no-thread.c: New file.
	* gdb.server/stop-reply-no-thread.exp: New file.
jeffmahoney pushed a commit that referenced this pull request Jun 29, 2018
One test in gdb.compile/compile.exp passes on one fedora builder,

 bt
 #0  0x00007ffff7ff43f6 in _gdb_expr (__regs=0x7ffff7ff2000) at gdb
 command line:1^M
 #1  <function called from gdb>^M
 #2  main () at /home/gdb-buildbot/fedora-x86-64-1/fedora-x86-64/build/gdb/testsuite/../../../binutils-gdb/gdb/testsuite/gdb.compile/compile.c:106^M
 (gdb) PASS: gdb.compile/compile.exp: bt

but fails on my machine with gcc trunk,

 bt^M
 #0  _gdb_expr (__regs=0x7ffff7ff3000) at gdb command line:1^M
 #1  <function called from gdb>^M
 #2  main () at gdb/testsuite/gdb.compile/compile.c:106^M
 (gdb) FAIL: gdb.compile/compile.exp: bt

The test should be tweaked to match both cases (pc in the start of line
vs pc in the middle of line).  Note that I am not clear that why libcc1
emits debug info this way so that the address is in the middle of line.

gdb/testsuite:

2018-01-17  Yao Qi  <yao.qi@linaro.org>

	* gdb.compile/compile.exp: Match the address printed for
	frame in the output of command "bt".
jeffmahoney pushed a commit that referenced this pull request Apr 14, 2019
Running gdbserver under Valgrind I get:

  ==26925== Conditional jump or move depends on uninitialised value(s)
  ==26925==    at 0x473E7F: i387_cache_to_xsave(regcache*, void*) (i387-fp.c:579)
  ==26925==    by 0x46E3ED: x86_fill_xstateregset(regcache*, void*) (linux-x86-low.c:418)
  ==26925==    by 0x45E747: regsets_store_inferior_registers(regsets_info*, regcache*) (linux-low.c:5456)
  ==26925==    by 0x45EEF8: linux_store_registers(regcache*, int) (linux-low.c:5731)
  ==26925==    by 0x426441: regcache_invalidate_thread(thread_info*) (regcache.c:89)
  ==26925==    by 0x45CCAF: linux_resume_one_lwp_throw(lwp_info*, int, int, siginfo_t*) (linux-low.c:4447)
  ==26925==    by 0x45CE2A: linux_resume_one_lwp(lwp_info*, int, int, siginfo_t*) (linux-low.c:4519)
  ==26925==    by 0x45E17C: proceed_one_lwp(thread_info*, lwp_info*) (linux-low.c:5216)
  ==26925==    by 0x45DC81: linux_resume_one_thread(thread_info*, bool) (linux-low.c:5031)
  ==26925==    by 0x45DD34: linux_resume(thread_resume*, unsigned long)::{lambda(thread_info*)#2}::operator()(thread_info*) const (linux-low.c:5095)
  ==26925==    by 0x462907: void for_each_thread<linux_resume(thread_resume*, unsigned long)::{lambda(thread_info*)#2}>(linux_resume(thread_resume*, unsigned long)::{lambda(thread_info*)#2}) (gdbthread.h:150)
  ==26925==    by 0x45DE62: linux_resume(thread_resume*, unsigned long) (linux-low.c:5093)
  ==26925==
  ==26925== Conditional jump or move depends on uninitialised value(s)
  ==26925==    at 0x473EBD: i387_cache_to_xsave(regcache*, void*) (i387-fp.c:586)
  ==26925==    by 0x46E3ED: x86_fill_xstateregset(regcache*, void*) (linux-x86-low.c:418)
  ==26925==    by 0x45E747: regsets_store_inferior_registers(regsets_info*, regcache*) (linux-low.c:5456)
  ==26925==    by 0x45EEF8: linux_store_registers(regcache*, int) (linux-low.c:5731)
  ==26925==    by 0x426441: regcache_invalidate_thread(thread_info*) (regcache.c:89)
  ==26925==    by 0x45CCAF: linux_resume_one_lwp_throw(lwp_info*, int, int, siginfo_t*) (linux-low.c:4447)
  ==26925==    by 0x45CE2A: linux_resume_one_lwp(lwp_info*, int, int, siginfo_t*) (linux-low.c:4519)
  ==26925==    by 0x45E17C: proceed_one_lwp(thread_info*, lwp_info*) (linux-low.c:5216)
  ==26925==    by 0x45DC81: linux_resume_one_thread(thread_info*, bool) (linux-low.c:5031)
  ==26925==    by 0x45DD34: linux_resume(thread_resume*, unsigned long)::{lambda(thread_info*)#2}::operator()(thread_info*) const (linux-low.c:5095)
  ==26925==    by 0x462907: void for_each_thread<linux_resume(thread_resume*, unsigned long)::{lambda(thread_info*)#2}>(linux_resume(thread_resume*, unsigned long)::{lambda(thread_info*)#2}) (gdbthread.h:150)
  ==26925==    by 0x45DE62: linux_resume(thread_resume*, unsigned long) (linux-low.c:5093)

The problem is a type/width mismatch in code like this, in
gdbserver/i387-fp.c:

  /* Some registers are 16-bit.  */
  collect_register_by_name (regcache, "fctrl", &val);
  fp->fctrl = val;

In the above code:

 #1 - 'val' is a 64-bit unsigned long.

 #2 - "fctrl" is 32-bit in the register cache, thus half of 'val' is
      left uninitialized by collect_register_by_name, which works with
      an untyped raw buffer output (i.e., void*).

 #3 - fp->fctrl is an unsigned short (16-bit).  For some such
      registers we're masking off the uninitialized bits with 0xffff,
      but not in all cases.

We end up in such a fragile situation because
collect_registers_by_name works with an untyped output buffer pointer,
making it easy to pass a pointer to a variable of the wrong size.

Fix this by using regcache_raw_get_unsigned instead (actually a new
regcache_raw_get_unsigned_by_name wrapper), which always returns a
zero-extended ULONGEST register value.  It ends up simplifying the
i387-tdep.c code a bit, even.

gdb/gdbserver/ChangeLog:
2018-07-11  Pedro Alves  <palves@redhat.com>

	* i387-fp.c (i387_cache_to_fsave, cache_to_fxsave)
	(i387_cache_to_xsave): Use regcache_raw_get_unsigned_by_name
	instead of collect_register_by_name.
	* regcache.c (regcache_raw_get_unsigned_by_name): New.
	* regcache.h (regcache_raw_get_unsigned_by_name): New.
jeffmahoney pushed a commit that referenced this pull request Apr 14, 2019
… gdb/23377)

This fixes a gdb.base/multi-forks.exp regression with GDBserver.

Git commit f2ffa92 ("gdb: Eliminate the 'stop_pc' global") caused
the regression by exposing a latent bug in gdbserver.

The bug is that GDBserver's implementation of the D;PID packet
incorrectly assumes that the selected thread points to the process
being detached.  This happens via the any_persistent_commands call,
which calls current_process:

  (gdb) bt
  #0  0x000000000040a57e in internal_error(char const*, int, char const*, ...)
  (file=0x4a53c0 "src/gdb/gdbserver/inferiors.c", line=212, fmt=0x4a539e "%s:
  Assertion `%s' failed.") at src/gdb/gdbserver/../common/errors.c:54
  #1  0x0000000000420acf in current_process() () at
  src/gdb/gdbserver/inferiors.c:212
  #2  0x00000000004226a0 in any_persistent_commands() () at
  gdb/gdbserver/mem-break.c:308
  #3  0x000000000042cb43 in handle_detach(char*) (own_buf=0x6f0280 "D;62ea") at
  src/gdb/gdbserver/server.c:1210
  #4  0x0000000000433af3 in process_serial_event() () at
  src/gdb/gdbserver/server.c:4055
  #5  0x0000000000434878 in handle_serial_event(int, void*) (err=0,
  client_data=0x0)

The "eliminate stop_pc" commit exposes the problem because before that
commit, GDB's switch_to_thread always read the newly-selected thread's
PC, and that would end up forcing GDBserver's selected thread to
change accordingly as side effect.  After that commit, GDB no longer
reads the thread's PC, and GDBserver does not switch the thread.

Fix this by removing the assumption from GDBserver.

gdb/gdbserver/ChangeLog:
2018-07-11  Pedro Alves  <palves@redhat.com>

	PR gdb/23377
	* mem-break.c (any_persistent_commands): Add process_info
	parameter and use it instead of relying on the current process.
	Change return type to bool.
	* mem-break.h (any_persistent_commands): Add process_info
	parameter and change return type to bool.
	* server.c (handle_detach): Remove require_running_or_return call.
	Look up the process_info for the process we're about to detach.
	If not found, return back error to GDB.  Adjust
	any_persistent_commands call to pass down a process pointer.
jeffmahoney pushed a commit that referenced this pull request Apr 14, 2019
…b/23379)

This commit fixes a 8.1->8.2 regression exposed by
gdb.python/py-evthreads.exp when testing with
--target_board=native-gdbserver.

gdb.log shows:

  src/gdb/thread.c:93: internal-error: thread_info* inferior_thread(): Assertion `tp' failed.
  A problem internal to GDB has been detected,
  further debugging may prove unreliable.
  Quit this debugging session? (y or n) FAIL: gdb.python/py-evthreads.exp: run to breakpoint 1 (GDB internal error)

A backtrace shows (frames #2 and #10 highlighted) that the assertion
fails when GDB is setting up the connection to the remote target, in
non-stop mode:

  #0  0x0000000000622ff0 in internal_error(char const*, int, char const*, ...) (file=0xc1ad98 "src/gdb/thread.c", line=93, fmt=0xc1ad20 "%s: Assertion `%s' failed.") at src/gdb/common/errors.c:54
  #1  0x000000000089567e in inferior_thread() () at src/gdb/thread.c:93
= #2  0x00000000004da91d in get_event_thread() () at src/gdb/python/py-threadevent.c:38
  #3  0x00000000004da9b7 in create_thread_event_object(_typeobject*, _object*) (py_type=0x11574c0 <continue_event_object_type>, thread=0x0)
      at src/gdb/python/py-threadevent.c:60
  #4  0x00000000004bf6fe in create_continue_event_object() () at src/gdb/python/py-continueevent.c:27
  #5  0x00000000004bf738 in emit_continue_event(ptid_t) (ptid=...) at src/gdb/python/py-continueevent.c:40
  #6  0x00000000004c7d47 in python_on_resume(ptid_t) (ptid=...) at src/gdb/python/py-inferior.c:108
  #7  0x0000000000485bfb in std::_Function_handler<void (ptid_t), void (*)(ptid_t)>::_M_invoke(std::_Any_data const&, ptid_t&&) (__functor=..., __args#0=...) at /usr/include/c++/7/bits/std_function.h:316
  #8  0x000000000089b416 in std::function<void (ptid_t)>::operator()(ptid_t) const (this=0x12aa600, __args#0=...)
      at /usr/include/c++/7/bits/std_function.h:706
  #9  0x000000000089aa0e in gdb::observers::observable<ptid_t>::notify(ptid_t) const (this=0x118a7a0 <gdb::observers::target_resumed>, args#0=...)
      at src/gdb/common/observable.h:106
= #10 0x0000000000896fbe in set_running(ptid_t, int) (ptid=..., running=1) at src/gdb/thread.c:880
  #11 0x00000000007f750f in remote_target::remote_add_thread(ptid_t, bool, bool) (this=0x12c5440, ptid=..., running=true, executing=true) at src/gdb/remote.c:2434
  #12 0x00000000007f779d in remote_target::remote_notice_new_inferior(ptid_t, int) (this=0x12c5440, currthread=..., executing=1)
      at src/gdb/remote.c:2515
  #13 0x00000000007f9c44 in remote_target::update_thread_list() (this=0x12c5440) at src/gdb/remote.c:3831
  #14 0x00000000007fb922 in remote_target::start_remote(int, int) (this=0x12c5440, from_tty=0, extended_p=0)
      at src/gdb/remote.c:4655
  #15 0x00000000007fd102 in remote_target::open_1(char const*, int, int) (name=0x1a4f45e "localhost:2346", from_tty=0, extended_p=0)
      at src/gdb/remote.c:5638
  #16 0x00000000007fbec1 in remote_target::open(char const*, int) (name=0x1a4f45e "localhost:2346", from_tty=0)
      at src/gdb/remote.c:4862

So on frame #10, we're marking a newly-discovered thread as running,
and that causes the Python API to emit a gdb.ContinueEvent.
gdb.ContinueEvent is a gdb.ThreadEvent, and as such includes the event
thread as the "inferior_thread" attribute.  The problem is that when
we get to frame #3/#4, we lost all references to the thread that is
being marked as running.  create_continue_event_object assumes that it
is the current thread, which is not true in this case.

Fix this by passing down the right thread in
create_continue_event_object.  Also remove
create_thread_event_object's default argument and have the only other
caller left pass down the right thread explicitly too.

gdb/ChangeLog:
2018-08-24  Pedro Alves  <palves@redhat.com>
	    Simon Marchi  <simon.marchi@ericsson.com>

	PR gdb/23379
	* python/py-continueevent.c: Include "gdbthread.h".
	(create_continue_event_object): Add intro comment.  Add 'ptid'
	parameter.  Use it to find thread to pass to
	create_thread_event_object.
	(emit_continue_event): Pass PTID down to
	create_continue_event_object.
	* python/py-event.h (py_get_event_thread): Declare.
	(create_thread_event_object): Remove default from 'thread'
	parameter.
	* python/py-stopevent.c (create_stop_event_object): Use
	py_get_event_thread.
	* python/py-threadevent.c (get_event_thread): Rename to ...
	(py_get_event_thread): ... this, make extern, add 'ptid' parameter
	and use it to find the thread.
	(create_thread_event_object): Assert that THREAD isn't null.
	Don't find the event thread here.
jeffmahoney pushed a commit that referenced this pull request Apr 14, 2019
This change adds an optional output parameter BLOCK to
find_pc_partial_function.  If BLOCK is non-null, then *BLOCK will be
set to the address of the block corresponding to the function symbol
if such a symbol was found during lookup.  Otherwise it's set to the
NULL value.  Callers may wish to use the block information to
determine whether the block contains any non-contiguous ranges.  The
caller may also iterate over or examine those ranges.

When I first started looking at the broken stepping behavior associated
with functions w/ non-contiguous ranges, I found that I could "fix"
the problem by disabling the find_pc_partial_function cache.  It would
sometimes happen that the PC passed in would be between the low and
high cache values, but would be in some other function that happens to
be placed in between the ranges for the cached function.  This caused
incorrect values to be returned.

So dealing with this cache turns out to be very important for fixing
this problem.  I explored three different ways of dealing with the
cache.

My first approach was to clear the cache when a block was encountered
with more than one range.  This would cause the non-cache pathway to
be executed on the next call to find_pc_partial_function.

Another approach, which I suspect is slightly faster, checks to see
whether the PC is within one of the ranges associated with the cached
block.  If so, then the cached values can be used.  It falls back to
the original behavior if there is no cached block.

The current approach, suggested by Simon Marchi, is to restrict the
low/high pc values recorded for the cache to the beginning and end of
the range containing the PC value under consideration.  This allows us
to retain the simple (and fast) test for determining whether the
memoized (cached) values apply to the PC passed to
find_pc_partial_function.

Another choice that had to be made regards setting *ADDRESS and
*ENDADDR.  There are three possibilities which might make sense:

1) *ADDRESS and *ENDADDR represent the lowest and highest address
   of the function.
2) *ADDRESS and *ENDADDR are set to the start and end address of
   the range containing the entry pc.
3) *ADDRESS and *ENDADDR are set to the start and end address of
   the range in which PC is found.

An earlier version of this patch implemented option #1.  I found out
that it's not very useful though and, in fact, returns results that
are incorrect when used in the context of determining the start and
end of the function for doing prologue analysis.  While debugging a
function in which the entry pc was in the second range (of a function
containing two non-contiguous ranges), I noticed that
amd64_skip_prologue called find_pc_partial_function - the returned
start address was set to the beginning of the first range.  This is
incorrect for this function.  What was also interesting was that this
first invocation of find_pc_partial_function correctly set the cache
for the PC on which it had been invoked, but a slightly later call
from skip_prologue_using_sal could not use this cached value because
it was now being used to lookup the very lowest address of the
function - which is in a range not containing the entry pc.

Option #2 is attractive as it would provide a desirable result
when used in the context of prologue analysis.  However, many callers,
including some which do prologue analysis want the condition
*ADDRESS <= PC < *ENDADDR to hold.  This will not be the case when
find_pc_partial_function is called on a PC that's in a non-entry-pc
range.  A later patch to this series adds
find_function_entry_range_from_pc as a wrapper of
find_pc_partial_function.

Option #3 causes the *ADDRESS <= PC < *ENDADDR property to hold.  If
find_pc_partial_function is called with a PC that's within entry pc's
range, then it will correctly return the limits of that range.  So, if
the result of a minsym search is passed to find_pc_partial_function
to find the limits, then correct results will be achieved.  Returned
limits (for prologue analysis) won't be correct when PC is within some
other (non-entry-pc) range.  I don't yet know how big of a problem
this might be; I'm guessing that it won't be a serious problem - if a
compiler generates functions which have non-contiguous ranges, then it
also probably generates DWARF2 CFI which makes a lot of the old
prologue analysis moot.

I've implemented option #3 for this version of the patch.  I don't see
any regressions for x86-64.  Moreover, I don't expect to see
regressions for other targets either simply because
find_pc_partial_function behaves the same as it did before for the
contiguous address range case.  That said, there may be some
adjustments needed if GDB encounters a function requiring prologue
analysis which occupies non-contiguous ranges.

gdb/ChangeLog:

	* symtab.h (find_pc_partial_function): Add new parameter `block'.
	* blockframe.c (cache_pc_function_block): New static global.
	(clear_pc_function_cache): Clear cache_pc_function_block.
	(find_pc_partial_function): Move comment to symtab.h.  Add
	support for non-contiguous blocks.
jeffmahoney pushed a commit that referenced this pull request Apr 16, 2019
ravenscar-thread.c intercepts resume and wait target requests and
replaces the requested ptid with the ptid of the underlying CPU.
However, this is incorrect when a request is made with a wildcard
ptid.

This patch adds a special case to ravenscar-thread.c for
minus_one_ptid.  I don't believe a special case for process wildcards
is necessary, so I have not added that.

Joel's description explains the bug well:

At the user level, we noticed the issue because we had a test were
we insert a breakpoint one some code which is only run from, say,
CPU #2, whereas we unfortunately resumed the execution after having
stopped somewhere in CPU #1. As a result, we sent an order to resume
CPU #1, which starves CPU #2 forever, because the code in CPU #1
waits for some of the Ada tasks allocated to CPU #2 (and we never
reach our breakpoint either).

gdb/ChangeLog
2019-02-15  Tom Tromey  <tromey@adacore.com>

	* ravenscar-thread.c (ravenscar_thread_target::resume)
	(ravenscar_thread_target::wait): Special case wildcard requests.
jeffmahoney pushed a commit that referenced this pull request Apr 16, 2019
Errors that happen in nested sourced files (when a sourced file sources
another file) lead to a wrong error message, or use-after-free.

For example, if I put this in "a.gdb":

    command_that_doesnt_exist

and this in "b.gdb":

   source a.gdb

and try to "source b.gdb" in GDB, the result may look like this:

    (gdb) source b.gdb
    b.gdb:1: Error in sourced command file:
    _that_doesnt_exist:1: Error in sourced command file:
    Undefined command: "command_that_doesnt_exist".  Try "help".

Notice the wrong file name where "a.gdb" should be.  The exact result
may differ, depending on the feelings of the memory allocator.

What happens is:

- The "source a.gdb" command is saved by command_line_append_input_line
  in command_line_input's static buffer.
- Since we are sourcing a file, the script_from_file function stores the
  script name (a.gdb) in the source_file_name global.  However, it doesn't
  do a copy, it just saves a pointer to command_line_input's static buffer.
- The "command_that_doesnt_exist" command is saved by
  command_line_append_input_line in command_line_input's static buffer.
  Depending on what xrealloc does, source_file_name may now point to
  freed memory, or at the minimum the data it was pointing to was
  overwritten.
- When the error is handled in script_from_file, we dererence
  source_file_name to print the name of the file in which the error
  occured.

To fix it, I made source_file_name an std::string, so that keeps a copy of
the file name instead of pointing to a buffer with a too small
lifetime.

With this patch, the expected filename is printed, and no use-after-free
occurs:

    (gdb) source b.gdb
    b.gdb:1: Error in sourced command file:
    a.gdb:1: Error in sourced command file:
    Undefined command: "command_that_doesnt_exist".  Try "help".

I passed explicit template parameters to make_scoped_restore
(<std::string, const std::string &>), so that the second parameter is
passed by reference and avoid a copy.

It was not as obvious as I first thought to change gdb.base/source.exp
to test this, because source commands inside sourced files are
interpreted relative to GDB's current working directory, not the
directory of the currently sourced file.  As a workaround, I moved the
snippet that tests errors after the snippet that adds the source
directory to the search path.  This way, the "source source-error-1.gdb"
line in source-error.exp manages to find the file.

For reference, here is what ASAN reports when use-after-free occurs:

(gdb) source b.gdb
=================================================================
==18498==ERROR: AddressSanitizer: heap-use-after-free on address 0x60c000019847 at pc 0x7f1d3645de8e bp 0x7ffdcb892e50 sp 0x7ffdcb8925c8
READ of size 6 at 0x60c000019847 thread T0
    #0 0x7f1d3645de8d in printf_common /build/gcc/src/gcc/libsanitizer/sanitizer_common/sanitizer_common_interceptors_format.inc:546
    #1 0x7f1d36477175 in __interceptor_vasprintf /build/gcc/src/gcc/libsanitizer/sanitizer_common/sanitizer_common_interceptors.inc:1525
    #2 0x5632eaffa277 in xstrvprintf(char const*, __va_list_tag*) /home/simark/src/binutils-gdb/gdb/common/common-utils.c:122
    #3 0x5632eaff96d1 in throw_it /home/simark/src/binutils-gdb/gdb/common/common-exceptions.c:351
    #4 0x5632eaff98df in throw_verror(errors, char const*, __va_list_tag*) /home/simark/src/binutils-gdb/gdb/common/common-exceptions.c:379
    #5 0x5632eaff9a2a in throw_error(errors, char const*, ...) /home/simark/src/binutils-gdb/gdb/common/common-exceptions.c:394
    #6 0x5632eafca21a in script_from_file(_IO_FILE*, char const*) /home/simark/src/binutils-gdb/gdb/cli/cli-script.c:1553
    #7 0x5632eaf8a500 in source_script_from_stream /home/simark/src/binutils-gdb/gdb/cli/cli-cmds.c:569
    #8 0x5632eaf8a735 in source_script_with_search /home/simark/src/binutils-gdb/gdb/cli/cli-cmds.c:605
    #9 0x5632eaf8ab20 in source_command /home/simark/src/binutils-gdb/gdb/cli/cli-cmds.c:664
    #10 0x5632eafa8b4a in do_const_cfunc /home/simark/src/binutils-gdb/gdb/cli/cli-decode.c:106
    #11 0x5632eafb0687 in cmd_func(cmd_list_element*, char const*, int) /home/simark/src/binutils-gdb/gdb/cli/cli-decode.c:1892
    #12 0x5632ebf3dd87 in execute_command(char const*, int) /home/simark/src/binutils-gdb/gdb/top.c:630
    #13 0x5632eb3b25d3 in command_handler(char const*) /home/simark/src/binutils-gdb/gdb/event-top.c:583
    #14 0x5632ebf3cf09 in read_command_file(_IO_FILE*) /home/simark/src/binutils-gdb/gdb/top.c:425
    #15 0x5632eafca054 in script_from_file(_IO_FILE*, char const*) /home/simark/src/binutils-gdb/gdb/cli/cli-script.c:1547
    #16 0x5632eaf8a500 in source_script_from_stream /home/simark/src/binutils-gdb/gdb/cli/cli-cmds.c:569
    #17 0x5632eaf8a735 in source_script_with_search /home/simark/src/binutils-gdb/gdb/cli/cli-cmds.c:605
    #18 0x5632eaf8ab20 in source_command /home/simark/src/binutils-gdb/gdb/cli/cli-cmds.c:664
    #19 0x5632eafa8b4a in do_const_cfunc /home/simark/src/binutils-gdb/gdb/cli/cli-decode.c:106
    #20 0x5632eafb0687 in cmd_func(cmd_list_element*, char const*, int) /home/simark/src/binutils-gdb/gdb/cli/cli-decode.c:1892
    #21 0x5632ebf3dd87 in execute_command(char const*, int) /home/simark/src/binutils-gdb/gdb/top.c:630
    #22 0x5632eb3b25d3 in command_handler(char const*) /home/simark/src/binutils-gdb/gdb/event-top.c:583
    #23 0x5632eb3b2f87 in command_line_handler(std::unique_ptr<char, gdb::xfree_deleter<char> >&&) /home/simark/src/binutils-gdb/gdb/event-top.c:770
    #24 0x5632eb3b0fe1 in gdb_rl_callback_handler /home/simark/src/binutils-gdb/gdb/event-top.c:213
    #25 0x5632ec1c8729 in rl_callback_read_char /home/simark/src/binutils-gdb/readline/callback.c:220
    #26 0x5632eb3b0b8f in gdb_rl_callback_read_char_wrapper_noexcept /home/simark/src/binutils-gdb/gdb/event-top.c:175
    #27 0x5632eb3b0da1 in gdb_rl_callback_read_char_wrapper /home/simark/src/binutils-gdb/gdb/event-top.c:192
    #28 0x5632eb3b2186 in stdin_event_handler(int, void*) /home/simark/src/binutils-gdb/gdb/event-top.c:511
    #29 0x5632eb3aa6a9 in handle_file_event /home/simark/src/binutils-gdb/gdb/event-loop.c:733
    #30 0x5632eb3aaf41 in gdb_wait_for_event /home/simark/src/binutils-gdb/gdb/event-loop.c:859
    #31 0x5632eb3a88ea in gdb_do_one_event() /home/simark/src/binutils-gdb/gdb/event-loop.c:347
    #32 0x5632eb3a89bf in start_event_loop() /home/simark/src/binutils-gdb/gdb/event-loop.c:371
    #33 0x5632eb76fbfc in captured_command_loop /home/simark/src/binutils-gdb/gdb/main.c:330
    #34 0x5632eb772ea8 in captured_main /home/simark/src/binutils-gdb/gdb/main.c:1176
    #35 0x5632eb773071 in gdb_main(captured_main_args*) /home/simark/src/binutils-gdb/gdb/main.c:1192
    #36 0x5632eabfe7f9 in main /home/simark/src/binutils-gdb/gdb/gdb.c:32
    #37 0x7f1d3554f222 in __libc_start_main (/usr/lib/libc.so.6+0x24222)
    #38 0x5632eabfe5dd in _start (/home/simark/build/binutils-gdb/gdb/gdb+0x195d5dd)

0x60c000019847 is located 7 bytes inside of 128-byte region [0x60c000019840,0x60c0000198c0)
freed by thread T0 here:
    #0 0x7f1d36502491 in __interceptor_realloc /build/gcc/src/gcc/libsanitizer/asan/asan_malloc_linux.cc:105
    #1 0x5632eaff9f47 in xrealloc /home/simark/src/binutils-gdb/gdb/common/common-utils.c:62
    #2 0x5632eaff6b44 in buffer_grow(buffer*, char const*, unsigned long) /home/simark/src/binutils-gdb/gdb/common/buffer.c:40
    #3 0x5632eb3b271d in command_line_append_input_line /home/simark/src/binutils-gdb/gdb/event-top.c:614
    #4 0x5632eb3b28c6 in handle_line_of_input(buffer*, char const*, int, char const*) /home/simark/src/binutils-gdb/gdb/event-top.c:654
    #5 0x5632ebf402a6 in command_line_input(char const*, char const*) /home/simark/src/binutils-gdb/gdb/top.c:1252
    #6 0x5632ebf3cee9 in read_command_file(_IO_FILE*) /home/simark/src/binutils-gdb/gdb/top.c:422
    #7 0x5632eafca054 in script_from_file(_IO_FILE*, char const*) /home/simark/src/binutils-gdb/gdb/cli/cli-script.c:1547
    #8 0x5632eaf8a500 in source_script_from_stream /home/simark/src/binutils-gdb/gdb/cli/cli-cmds.c:569
    #9 0x5632eaf8a735 in source_script_with_search /home/simark/src/binutils-gdb/gdb/cli/cli-cmds.c:605
    #10 0x5632eaf8ab20 in source_command /home/simark/src/binutils-gdb/gdb/cli/cli-cmds.c:664
    #11 0x5632eafa8b4a in do_const_cfunc /home/simark/src/binutils-gdb/gdb/cli/cli-decode.c:106
    #12 0x5632eafb0687 in cmd_func(cmd_list_element*, char const*, int) /home/simark/src/binutils-gdb/gdb/cli/cli-decode.c:1892
    #13 0x5632ebf3dd87 in execute_command(char const*, int) /home/simark/src/binutils-gdb/gdb/top.c:630
    #14 0x5632eb3b25d3 in command_handler(char const*) /home/simark/src/binutils-gdb/gdb/event-top.c:583
    #15 0x5632ebf3cf09 in read_command_file(_IO_FILE*) /home/simark/src/binutils-gdb/gdb/top.c:425
    #16 0x5632eafca054 in script_from_file(_IO_FILE*, char const*) /home/simark/src/binutils-gdb/gdb/cli/cli-script.c:1547
    #17 0x5632eaf8a500 in source_script_from_stream /home/simark/src/binutils-gdb/gdb/cli/cli-cmds.c:569
    #18 0x5632eaf8a735 in source_script_with_search /home/simark/src/binutils-gdb/gdb/cli/cli-cmds.c:605
    #19 0x5632eaf8ab20 in source_command /home/simark/src/binutils-gdb/gdb/cli/cli-cmds.c:664
    #20 0x5632eafa8b4a in do_const_cfunc /home/simark/src/binutils-gdb/gdb/cli/cli-decode.c:106
    #21 0x5632eafb0687 in cmd_func(cmd_list_element*, char const*, int) /home/simark/src/binutils-gdb/gdb/cli/cli-decode.c:1892
    #22 0x5632ebf3dd87 in execute_command(char const*, int) /home/simark/src/binutils-gdb/gdb/top.c:630
    #23 0x5632eb3b25d3 in command_handler(char const*) /home/simark/src/binutils-gdb/gdb/event-top.c:583
    #24 0x5632eb3b2f87 in command_line_handler(std::unique_ptr<char, gdb::xfree_deleter<char> >&&) /home/simark/src/binutils-gdb/gdb/event-top.c:770
    #25 0x5632eb3b0fe1 in gdb_rl_callback_handler /home/simark/src/binutils-gdb/gdb/event-top.c:213
    #26 0x5632ec1c8729 in rl_callback_read_char /home/simark/src/binutils-gdb/readline/callback.c:220
    #27 0x5632eb3b0b8f in gdb_rl_callback_read_char_wrapper_noexcept /home/simark/src/binutils-gdb/gdb/event-top.c:175
    #28 0x5632eb3b0da1 in gdb_rl_callback_read_char_wrapper /home/simark/src/binutils-gdb/gdb/event-top.c:192
    #29 0x5632eb3b2186 in stdin_event_handler(int, void*) /home/simark/src/binutils-gdb/gdb/event-top.c:511

previously allocated by thread T0 here:
    #0 0x7f1d36502491 in __interceptor_realloc /build/gcc/src/gcc/libsanitizer/asan/asan_malloc_linux.cc:105
    #1 0x5632eaff9f47 in xrealloc /home/simark/src/binutils-gdb/gdb/common/common-utils.c:62
    #2 0x5632eaff6b44 in buffer_grow(buffer*, char const*, unsigned long) /home/simark/src/binutils-gdb/gdb/common/buffer.c:40
    #3 0x5632eb3b271d in command_line_append_input_line /home/simark/src/binutils-gdb/gdb/event-top.c:614
    #4 0x5632eb3b28c6 in handle_line_of_input(buffer*, char const*, int, char const*) /home/simark/src/binutils-gdb/gdb/event-top.c:654
    #5 0x5632ebf402a6 in command_line_input(char const*, char const*) /home/simark/src/binutils-gdb/gdb/top.c:1252
    #6 0x5632ebf3cee9 in read_command_file(_IO_FILE*) /home/simark/src/binutils-gdb/gdb/top.c:422
    #7 0x5632eafca054 in script_from_file(_IO_FILE*, char const*) /home/simark/src/binutils-gdb/gdb/cli/cli-script.c:1547
    #8 0x5632eaf8a500 in source_script_from_stream /home/simark/src/binutils-gdb/gdb/cli/cli-cmds.c:569
    #9 0x5632eaf8a735 in source_script_with_search /home/simark/src/binutils-gdb/gdb/cli/cli-cmds.c:605
    #10 0x5632eaf8ab20 in source_command /home/simark/src/binutils-gdb/gdb/cli/cli-cmds.c:664
    #11 0x5632eafa8b4a in do_const_cfunc /home/simark/src/binutils-gdb/gdb/cli/cli-decode.c:106
    #12 0x5632eafb0687 in cmd_func(cmd_list_element*, char const*, int) /home/simark/src/binutils-gdb/gdb/cli/cli-decode.c:1892
    #13 0x5632ebf3dd87 in execute_command(char const*, int) /home/simark/src/binutils-gdb/gdb/top.c:630
    #14 0x5632eb3b25d3 in command_handler(char const*) /home/simark/src/binutils-gdb/gdb/event-top.c:583
    #15 0x5632eb3b2f87 in command_line_handler(std::unique_ptr<char, gdb::xfree_deleter<char> >&&) /home/simark/src/binutils-gdb/gdb/event-top.c:770
    #16 0x5632eb3b0fe1 in gdb_rl_callback_handler /home/simark/src/binutils-gdb/gdb/event-top.c:213
    #17 0x5632ec1c8729 in rl_callback_read_char /home/simark/src/binutils-gdb/readline/callback.c:220
    #18 0x5632eb3b0b8f in gdb_rl_callback_read_char_wrapper_noexcept /home/simark/src/binutils-gdb/gdb/event-top.c:175
    #19 0x5632eb3b0da1 in gdb_rl_callback_read_char_wrapper /home/simark/src/binutils-gdb/gdb/event-top.c:192
    #20 0x5632eb3b2186 in stdin_event_handler(int, void*) /home/simark/src/binutils-gdb/gdb/event-top.c:511
    #21 0x5632eb3aa6a9 in handle_file_event /home/simark/src/binutils-gdb/gdb/event-loop.c:733
    #22 0x5632eb3aaf41 in gdb_wait_for_event /home/simark/src/binutils-gdb/gdb/event-loop.c:859
    #23 0x5632eb3a88ea in gdb_do_one_event() /home/simark/src/binutils-gdb/gdb/event-loop.c:347
    #24 0x5632eb3a89bf in start_event_loop() /home/simark/src/binutils-gdb/gdb/event-loop.c:371
    #25 0x5632eb76fbfc in captured_command_loop /home/simark/src/binutils-gdb/gdb/main.c:330
    #26 0x5632eb772ea8 in captured_main /home/simark/src/binutils-gdb/gdb/main.c:1176
    #27 0x5632eb773071 in gdb_main(captured_main_args*) /home/simark/src/binutils-gdb/gdb/main.c:1192
    #28 0x5632eabfe7f9 in main /home/simark/src/binutils-gdb/gdb/gdb.c:32
    #29 0x7f1d3554f222 in __libc_start_main (/usr/lib/libc.so.6+0x24222)

SUMMARY: AddressSanitizer: heap-use-after-free /build/gcc/src/gcc/libsanitizer/sanitizer_common/sanitizer_common_interceptors_format.inc:546 in printf_common

gdb/ChangeLog:

	* top.h (source_file_name): Change to std::string.
	* top.c (source_file_name): Likewise.
	(command_line_input): Adjust.
	* cli/cli-script.c (script_from_file): Adjust.

gdb/testsuite/ChangeLog:

	* gdb.base/source.exp: Move "error in sourced script" code to
	the end.
	* gdb.base/source-error.gdb: Move contents to
	source-error-1.gdb.  Add new code to source source-error-1.gdb.
	* gdb.base/source-error-1.gdb: New file, from previous
	source-error.gdb.
jeffmahoney pushed a commit that referenced this pull request Apr 16, 2019
This commit fixes two issues in scrolling right in the TUI:

#1 - Scrolling right with the arrow keys, the first keypress doesn't
do anything.  The problem is that copy_source_line() checks if
(column < first_col), and because of the ++column directly before, it
basically starts with 1 instead of 0.

#2 - Scrolling right handles TABS and escaped characters as single
characters, which just looks weird.  The problem is that there's a
spot that misses handling TABS.

gdb/ChangeLog:
2019-03-18  Hannes Domani  <ssbssa@yahoo.de>

	* tui/tui-source.c (copy_source_line): Fix handling of 'column'.
	Handle tabs.
jeffmahoney pushed a commit that referenced this pull request Apr 16, 2019
Commit ab42892 ("Fix vertical scrolling of TUI source window")
introduced a use-after-free in source_cache::get_source_lines.

At the beginning of the method, we get the fullname of the symtab:

    const char *fullname = symtab_to_fullname (s);

fullname points to the string owned by the symtab (s.fullname).  When we
later do

    scoped_fd desc = open_source_file (s);

s.fullname gets reallocated (even though the string contents may not
change).  The fullname local variable now points to freed memory.

To avoid it, refresh the value of fullname after calling
open_source_file.

Here is the ASan report:

$ ./gdb -nx --data-directory=data-directory ./a.out
(gdb) start
Temporary breakpoint 1 at 0x1130: file test.cpp, line 12.
Starting program: /home/simark/build/binutils-gdb/gdb/a.out

Temporary breakpoint 1, main () at test.cpp:12
=================================================================
==26068==ERROR: AddressSanitizer: heap-use-after-free on address 0x6210003d4100 at pc 0x7fed89a34681 bp 0x7ffd8d185d80 sp 0x7ffd8d185528
READ of size 2 at 0x6210003d4100 thread T0
    #0 0x7fed89a34680 in __interceptor_strlen /build/gcc/src/gcc/libsanitizer/sanitizer_common/sanitizer_common_interceptors.inc:301
    #1 0x55b6edf6c2f7 in std::char_traits<char>::length(char const*) /usr/include/c++/8.2.1/bits/char_traits.h:320
    #2 0x55b6edf6c9b2 in std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >::basic_string(char const*, std::allocator<char> const&) /usr/include/c++/8.2.1/bits/basic_string.h:516
    #3 0x55b6ef09121b in source_cache::get_source_lines(symtab*, int, int, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >*) /home/simark/src/binutils-gdb/gdb/source-cache.c:214
    #4 0x55b6ef0a15cb in print_source_lines_base /home/simark/src/binutils-gdb/gdb/source.c:1340
    #5 0x55b6ef0a2045 in print_source_lines(symtab*, int, int, enum_flags<print_source_lines_flag>) /home/simark/src/binutils-gdb/gdb/source.c:1415
    #6 0x55b6ef112c87 in print_frame_info(frame_info*, int, print_what, int, int) /home/simark/src/binutils-gdb/gdb/stack.c:914
    #7 0x55b6ef10e90d in print_stack_frame(frame_info*, int, print_what, int) /home/simark/src/binutils-gdb/gdb/stack.c:180
    #8 0x55b6ee9592f8 in print_stop_location /home/simark/src/binutils-gdb/gdb/infrun.c:7853
    #9 0x55b6ee95948f in print_stop_event(ui_out*) /home/simark/src/binutils-gdb/gdb/infrun.c:7870
    #10 0x55b6ef34b962 in tui_on_normal_stop /home/simark/src/binutils-gdb/gdb/tui/tui-interp.c:98
    #11 0x55b6ee01a14d in std::_Function_handler<void (bpstats*, int), void (*)(bpstats*, int)>::_M_invoke(std::_Any_data const&, bpstats*&&, int&&) /usr/include/c++/8.2.1/bits/std_function.h:297
    #12 0x55b6ee965415 in std::function<void (bpstats*, int)>::operator()(bpstats*, int) const /usr/include/c++/8.2.1/bits/std_function.h:687
    #13 0x55b6ee962f1b in gdb::observers::observable<bpstats*, int>::notify(bpstats*, int) const /home/simark/src/binutils-gdb/gdb/common/observable.h:106
    #14 0x55b6ee95a6e7 in normal_stop() /home/simark/src/binutils-gdb/gdb/infrun.c:8142
    #15 0x55b6ee93f236 in fetch_inferior_event(void*) /home/simark/src/binutils-gdb/gdb/infrun.c:3782
    #16 0x55b6ee8f2641 in inferior_event_handler(inferior_event_type, void*) /home/simark/src/binutils-gdb/gdb/inf-loop.c:43
    #17 0x55b6eea2a1f0 in handle_target_event /home/simark/src/binutils-gdb/gdb/linux-nat.c:4358
    #18 0x55b6ee7045f1 in handle_file_event /home/simark/src/binutils-gdb/gdb/event-loop.c:733
    #19 0x55b6ee704e89 in gdb_wait_for_event /home/simark/src/binutils-gdb/gdb/event-loop.c:859
    #20 0x55b6ee7027b5 in gdb_do_one_event() /home/simark/src/binutils-gdb/gdb/event-loop.c:322
    #21 0x55b6ee702907 in start_event_loop() /home/simark/src/binutils-gdb/gdb/event-loop.c:371
    #22 0x55b6eeadfc16 in captured_command_loop /home/simark/src/binutils-gdb/gdb/main.c:331
    #23 0x55b6eeae2ef9 in captured_main /home/simark/src/binutils-gdb/gdb/main.c:1174
    #24 0x55b6eeae30c2 in gdb_main(captured_main_args*) /home/simark/src/binutils-gdb/gdb/main.c:1190
    #25 0x55b6edf4fa89 in main /home/simark/src/binutils-gdb/gdb/gdb.c:32
    #26 0x7fed88ad8222 in __libc_start_main (/usr/lib/libc.so.6+0x24222)
    #27 0x55b6edf4f86d in _start (/home/simark/build/binutils-gdb/gdb/gdb+0x197186d)

0x6210003d4100 is located 0 bytes inside of 4096-byte region [0x6210003d4100,0x6210003d5100)
freed by thread T0 here:
    #0 0x7fed89a8ac19 in __interceptor_free /build/gcc/src/gcc/libsanitizer/asan/asan_malloc_linux.cc:66
    #1 0x55b6edfe12df in xfree<char> /home/simark/src/binutils-gdb/gdb/common/common-utils.h:60
    #2 0x55b6edfea675 in gdb::xfree_deleter<char>::operator()(char*) const /home/simark/src/binutils-gdb/gdb/common/gdb_unique_ptr.h:34
    #3 0x55b6edfe532c in std::unique_ptr<char, gdb::xfree_deleter<char> >::reset(char*) /usr/include/c++/8.2.1/bits/unique_ptr.h:382
    #4 0x55b6edfe7329 in std::unique_ptr<char, gdb::xfree_deleter<char> >::operator=(std::unique_ptr<char, gdb::xfree_deleter<char> >&&) /usr/include/c++/8.2.1/bits/unique_ptr.h:289
    #5 0x55b6ef09ec2b in find_and_open_source(char const*, char const*, std::unique_ptr<char, gdb::xfree_deleter<char> >*) /home/simark/src/binutils-gdb/gdb/source.c:990
    #6 0x55b6ef09f56a in open_source_file(symtab*) /home/simark/src/binutils-gdb/gdb/source.c:1069
    #7 0x55b6ef090f78 in source_cache::get_source_lines(symtab*, int, int, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >*) /home/simark/src/binutils-gdb/gdb/source-cache.c:205
    #8 0x55b6ef0a15cb in print_source_lines_base /home/simark/src/binutils-gdb/gdb/source.c:1340
    #9 0x55b6ef0a2045 in print_source_lines(symtab*, int, int, enum_flags<print_source_lines_flag>) /home/simark/src/binutils-gdb/gdb/source.c:1415
    #10 0x55b6ef112c87 in print_frame_info(frame_info*, int, print_what, int, int) /home/simark/src/binutils-gdb/gdb/stack.c:914
    #11 0x55b6ef10e90d in print_stack_frame(frame_info*, int, print_what, int) /home/simark/src/binutils-gdb/gdb/stack.c:180
    #12 0x55b6ee9592f8 in print_stop_location /home/simark/src/binutils-gdb/gdb/infrun.c:7853
    #13 0x55b6ee95948f in print_stop_event(ui_out*) /home/simark/src/binutils-gdb/gdb/infrun.c:7870
    #14 0x55b6ef34b962 in tui_on_normal_stop /home/simark/src/binutils-gdb/gdb/tui/tui-interp.c:98
    #15 0x55b6ee01a14d in std::_Function_handler<void (bpstats*, int), void (*)(bpstats*, int)>::_M_invoke(std::_Any_data const&, bpstats*&&, int&&) /usr/include/c++/8.2.1/bits/std_function.h:297
    #16 0x55b6ee965415 in std::function<void (bpstats*, int)>::operator()(bpstats*, int) const /usr/include/c++/8.2.1/bits/std_function.h:687
    #17 0x55b6ee962f1b in gdb::observers::observable<bpstats*, int>::notify(bpstats*, int) const /home/simark/src/binutils-gdb/gdb/common/observable.h:106
    #18 0x55b6ee95a6e7 in normal_stop() /home/simark/src/binutils-gdb/gdb/infrun.c:8142
    #19 0x55b6ee93f236 in fetch_inferior_event(void*) /home/simark/src/binutils-gdb/gdb/infrun.c:3782
    #20 0x55b6ee8f2641 in inferior_event_handler(inferior_event_type, void*) /home/simark/src/binutils-gdb/gdb/inf-loop.c:43
    #21 0x55b6eea2a1f0 in handle_target_event /home/simark/src/binutils-gdb/gdb/linux-nat.c:4358
    #22 0x55b6ee7045f1 in handle_file_event /home/simark/src/binutils-gdb/gdb/event-loop.c:733
    #23 0x55b6ee704e89 in gdb_wait_for_event /home/simark/src/binutils-gdb/gdb/event-loop.c:859
    #24 0x55b6ee7027b5 in gdb_do_one_event() /home/simark/src/binutils-gdb/gdb/event-loop.c:322
    #25 0x55b6ee702907 in start_event_loop() /home/simark/src/binutils-gdb/gdb/event-loop.c:371
    #26 0x55b6eeadfc16 in captured_command_loop /home/simark/src/binutils-gdb/gdb/main.c:331
    #27 0x55b6eeae2ef9 in captured_main /home/simark/src/binutils-gdb/gdb/main.c:1174
    #28 0x55b6eeae30c2 in gdb_main(captured_main_args*) /home/simark/src/binutils-gdb/gdb/main.c:1190
    #29 0x55b6edf4fa89 in main /home/simark/src/binutils-gdb/gdb/gdb.c:32

previously allocated by thread T0 here:
    #0 0x7fed89a8b019 in __interceptor_malloc /build/gcc/src/gcc/libsanitizer/asan/asan_malloc_linux.cc:86
    #1 0x7fed88af983f in realpath@@GLIBC_2.3 (/usr/lib/libc.so.6+0x4583f)
    #2 0x7fed899dbbbc in __interceptor_canonicalize_file_name /build/gcc/src/gcc/libsanitizer/sanitizer_common/sanitizer_common_interceptors.inc:3297
    #3 0x55b6ee376a03 in gdb_realpath(char const*) /home/simark/src/binutils-gdb/gdb/common/pathstuff.c:72
    #4 0x55b6ef09ec12 in find_and_open_source(char const*, char const*, std::unique_ptr<char, gdb::xfree_deleter<char> >*) /home/simark/src/binutils-gdb/gdb/source.c:990
    #5 0x55b6ef09f56a in open_source_file(symtab*) /home/simark/src/binutils-gdb/gdb/source.c:1069
    #6 0x55b6ef0a0f12 in print_source_lines_base /home/simark/src/binutils-gdb/gdb/source.c:1270
    #7 0x55b6ef0a2045 in print_source_lines(symtab*, int, int, enum_flags<print_source_lines_flag>) /home/simark/src/binutils-gdb/gdb/source.c:1415
    #8 0x55b6ef112c87 in print_frame_info(frame_info*, int, print_what, int, int) /home/simark/src/binutils-gdb/gdb/stack.c:914
    #9 0x55b6ef10e90d in print_stack_frame(frame_info*, int, print_what, int) /home/simark/src/binutils-gdb/gdb/stack.c:180
    #10 0x55b6ee9592f8 in print_stop_location /home/simark/src/binutils-gdb/gdb/infrun.c:7853
    #11 0x55b6ee95948f in print_stop_event(ui_out*) /home/simark/src/binutils-gdb/gdb/infrun.c:7870
    #12 0x55b6ef34b962 in tui_on_normal_stop /home/simark/src/binutils-gdb/gdb/tui/tui-interp.c:98
    #13 0x55b6ee01a14d in std::_Function_handler<void (bpstats*, int), void (*)(bpstats*, int)>::_M_invoke(std::_Any_data const&, bpstats*&&, int&&) /usr/include/c++/8.2.1/bits/std_function.h:297
    #14 0x55b6ee965415 in std::function<void (bpstats*, int)>::operator()(bpstats*, int) const /usr/include/c++/8.2.1/bits/std_function.h:687
    #15 0x55b6ee962f1b in gdb::observers::observable<bpstats*, int>::notify(bpstats*, int) const /home/simark/src/binutils-gdb/gdb/common/observable.h:106
    #16 0x55b6ee95a6e7 in normal_stop() /home/simark/src/binutils-gdb/gdb/infrun.c:8142
    #17 0x55b6ee93f236 in fetch_inferior_event(void*) /home/simark/src/binutils-gdb/gdb/infrun.c:3782
    #18 0x55b6ee8f2641 in inferior_event_handler(inferior_event_type, void*) /home/simark/src/binutils-gdb/gdb/inf-loop.c:43
    #19 0x55b6eea2a1f0 in handle_target_event /home/simark/src/binutils-gdb/gdb/linux-nat.c:4358
    #20 0x55b6ee7045f1 in handle_file_event /home/simark/src/binutils-gdb/gdb/event-loop.c:733
    #21 0x55b6ee704e89 in gdb_wait_for_event /home/simark/src/binutils-gdb/gdb/event-loop.c:859
    #22 0x55b6ee7027b5 in gdb_do_one_event() /home/simark/src/binutils-gdb/gdb/event-loop.c:322
    #23 0x55b6ee702907 in start_event_loop() /home/simark/src/binutils-gdb/gdb/event-loop.c:371
    #24 0x55b6eeadfc16 in captured_command_loop /home/simark/src/binutils-gdb/gdb/main.c:331
    #25 0x55b6eeae2ef9 in captured_main /home/simark/src/binutils-gdb/gdb/main.c:1174
    #26 0x55b6eeae30c2 in gdb_main(captured_main_args*) /home/simark/src/binutils-gdb/gdb/main.c:1190
    #27 0x55b6edf4fa89 in main /home/simark/src/binutils-gdb/gdb/gdb.c:32
    #28 0x7fed88ad8222 in __libc_start_main (/usr/lib/libc.so.6+0x24222)

gdb/ChangeLog:

	* source-cache.c (source_cache::get_source_lines): Re-read
	fullname after calling open_source_file.
jeffmahoney pushed a commit that referenced this pull request Apr 16, 2019
…trace

The test  gdb.threads/watchthreads-reorder.exp verifies that the
'set debug infrun 1' debug output does not crash GDB.

Under high load, the test can still cause a GDB internal error (see details
below).

This patch fixes this crash, and improves/factorises some wait kind traces.

Tested on debian/amd64 + run one test with 'set debug infrun 1'.

Changes compared to the first version:
  * Handles the suggestions of Kevin to trace the relevant elements
    of the wait status (this is done by calling target_waitstatus_to_string).
  * Some other changes to factorise wait status tracing.

Note that using target_waitstatus_to_string instead of the 'locally printed'
status kind strings means that debug trace that was using strings such as:
   "EXITED" or "TARGET_WAITKIND_EXITED"
will now use what is printed by target_waitstatus_to_string e.g.
   "exited".

gdb/ChangeLog
2019-04-01  Philippe Waroquiers  <philippe.waroquiers@skynet.be>

	* infrun.c (stop_all_threads): If debug_infrun, always
	trace the wait status after wait_one, using
	target_waitstatus_to_string and target_pid_to_str.
	(handle_inferior_event): Replace various trace of
	wait status kind by a single trace.
	* gdb/gnu-nat.c (gnu_nat_target::wait): Replace local
	wait status kind image by target_waitstatus_to_string.
	* target/waitstatus.c (target_waitstatus_to_string): Fix
	obsolete comment.

  (top-gdb) bt
  #0  __GI_raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:51
  #1  0x00007f3d54a0642a in __GI_abort () at abort.c:89
  #2  0x0000555c24c60e66 in dump_core () at ../../fixleaks/gdb/utils.c:201
  #3  0x0000555c24c63d49 in internal_vproblem(internal_problem *, const char *, int, const char *, typedef __va_list_tag __va_list_tag *) (problem=problem@entry=0x555c25338d40 <internal_error_problem>, file=<optimized out>, line=287,
      fmt=<optimized out>, ap=<optimized out>) at ../../fixleaks/gdb/utils.c:411
  #4  0x0000555c24c63eab in internal_verror (file=<optimized out>, line=<optimized out>, fmt=<optimized out>,
      ap=<optimized out>) at ../../fixleaks/gdb/utils.c:436
  #5  0x0000555c249e8c22 in internal_error (file=file@entry=0x555c24e0f2ad "../../fixleaks/gdb/inferior.c",
      line=line@entry=287, fmt=<optimized out>) at ../../fixleaks/gdb/common/errors.c:55
  #6  0x0000555c247d3f5c in find_inferior_pid (pid=<optimized out>) at ../../fixleaks/gdb/inferior.c:287
  #7  0x0000555c24ad2248 in find_inferior_pid (pid=<optimized out>) at ../../fixleaks/gdb/inferior.c:302
  #8  find_inferior_ptid (ptid=...) at ../../fixleaks/gdb/inferior.c:301
  #9  0x0000555c24c35f25 in find_thread_ptid (ptid=...) at ../../fixleaks/gdb/thread.c:522
  #10 0x0000555c24b0ab4d in thread_db_target::pid_to_str[abi:cxx11](ptid_t) (
      this=0x555c2532e3e0 <the_thread_db_target>, ptid=...) at ../../fixleaks/gdb/linux-thread-db.c:1637
  #11 0x0000555c24c2f420 in target_pid_to_str[abi:cxx11](ptid_t) (ptid=...) at ../../fixleaks/gdb/target.c:2083
  #12 0x0000555c24ad9cab in stop_all_threads () at ../../fixleaks/gdb/infrun.c:4373
  #13 0x0000555c24ada00f in stop_waiting (ecs=<optimized out>) at ../../fixleaks/gdb/infrun.c:7464
  #14 0x0000555c24adc401 in process_event_stop_test (ecs=ecs@entry=0x7ffc9402d9d0) at ../../fixleaks/gdb/infrun.c:6181
  ...
  (top-gdb) fr 12
  #12 0x0000555c24ad9cab in stop_all_threads () at ../../fixleaks/gdb/infrun.c:4373
  (top-gdb) p event_ptid
  $5 = {m_pid = 25419, m_lwp = 25427, m_tid = 0}
  (top-gdb) p ptid
  $6 = {m_pid = 0, m_lwp = 0, m_tid = 0}
  (top-gdb) p ws
  $7 = {kind = TARGET_WAITKIND_THREAD_EXITED, value = {integer = 0, sig = GDB_SIGNAL_0, related_pid = {m_pid = 0,
        m_lwp = 0, m_tid = 0}, execd_pathname = 0x0, syscall_number = 0}}
  (top-gdb)

The gdb.log corresponding to the above crash is:
  (gdb) PASS: gdb.threads/watchthreads-reorder.exp: reorder1: set debug infrun 1
  continue
  Continuing.
  infrun: clear_proceed_status_thread (Thread 0x7ffff7fcfb40 (LWP 25419))
  infrun: clear_proceed_status_thread (Thread 0x7ffff7310700 (LWP 25427))
  infrun: clear_proceed_status_thread (Thread 0x7ffff6b0f700 (LWP 25428))
  infrun: proceed (addr=0xffffffffffffffff, signal=GDB_SIGNAL_DEFAULT)
  infrun: proceed: resuming Thread 0x7ffff7fcfb40 (LWP 25419)
  infrun: resume (step=0, signal=GDB_SIGNAL_0), trap_expected=0, current thread [Thread 0x7ffff7fcfb40 (LWP 25419)] at 0x7ffff7344317
  infrun: infrun_async(1)
  infrun: prepare_to_wait
  infrun: proceed: resuming Thread 0x7ffff7310700 (LWP 25427)
  infrun: resume (step=0, signal=GDB_SIGNAL_0), trap_expected=0, current thread [Thread 0x7ffff7310700 (LWP 25427)] at 0x5555555553d7
  infrun: prepare_to_wait
  infrun: proceed: resuming Thread 0x7ffff6b0f700 (LWP 25428)
  infrun: resume (step=0, signal=GDB_SIGNAL_0), trap_expected=0, current thread [Thread 0x7ffff6b0f700 (LWP 25428)] at 0x5555555554c8
  infrun: prepare_to_wait
  infrun: target_wait (-1.0.0, status) =
  infrun:   -1.0.0 [process -1],
  infrun:   status->kind = ignore
  infrun: TARGET_WAITKIND_IGNORE
  infrun: prepare_to_wait
  Joining the threads.
  [Thread 0x7ffff6b0f700 (LWP 25428) exited]
  infrun: target_wait (-1.0.0, status) =
  infrun:   -1.0.0 [process -1],
  infrun:   status->kind = ignore
  infrun: TARGET_WAITKIND_IGNORE
  infrun: prepare_to_wait
  infrun: target_wait (-1.0.0, status) =
  infrun:   25419.25419.0 [Thread 0x7ffff7fcfb40 (LWP 25419)],
  infrun:   status->kind = stopped, signal = GDB_SIGNAL_TRAP
  infrun: TARGET_WAITKIND_STOPPED
  infrun: stop_pc = 0x555555555e50
  infrun: context switch
  infrun: Switching context from Thread 0x7ffff6b0f700 (LWP 25428) to Thread 0x7ffff7fcfb40 (LWP 25419)
  infrun: BPSTAT_WHAT_STOP_NOISY
  infrun: stop_waiting
  infrun: stop_all_threads
  infrun: stop_all_threads, pass=0, iterations=0
  infrun:   Thread 0x7ffff7fcfb40 (LWP 25419) not executing
  infrun:   Thread 0x7ffff7310700 (LWP 25427) executing, need stop
  [Thread 0x7ffff7310700 (LWP 25427) exited]
  infrun: target_wait (-1.0.0, status) =
  infrun:   25419.25427.0 [LWP 25427],
  infrun:   status->kind = thread exited, status = 0
  infrun: infrun_async(0)
  ../../fixleaks/gdb/inferior.c:287: internal-error: inferior* find_inferior_pid(int): Assertion `pid != 0' failed.
  A problem internal to GDB has been detected,
  further debugging may prove unreliable.
  Quit this debugging session? (y or n) FAIL: gdb.threads/watchthreads-reorder.exp: reorder1: continue to breakpoint: break-at-exit (GDB internal error)
  Resyncing due to internal error.
  n
  infrun: infrun_async(1)

  This is a bug, please report it.  For instructions, see:
  <http://www.gnu.org/software/gdb/bugs/>.

  infrun: infrun_async(0)
  ../../fixleaks/gdb/inferior.c:287: internal-error: inferior* find_inferior_pid(int): Assertion `pid != 0' failed.
  A problem internal to GDB has been detected,
  further debugging may prove unreliable.
  Create a core file of GDB? (y or n) y
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants